F. Ventura, Stefano Proto, D. Apiletti, T. Cerquitelli, S. Panicucci, Elena Baralis, E. Macii, A. Macii
{"title":"A New Unsupervised Predictive-Model Self-Assessment Approach That SCALEs","authors":"F. Ventura, Stefano Proto, D. Apiletti, T. Cerquitelli, S. Panicucci, Elena Baralis, E. Macii, A. Macii","doi":"10.1109/BigDataCongress.2019.00033","DOIUrl":null,"url":null,"abstract":"Evaluating the degradation of predictive models over time has always been a difficult task, also considering that new unseen data might not fit the training distribution. This is a well-known problem in real-world use cases, where collecting the historical training set for all possible prediction labels may be very hard, too expensive or completely unfeasible. To solve this issue, we present a new unsupervised approach to detect and evaluate the degradation of classification and prediction models, based on a scalable variant of the Silhouette index, named Descriptor Silhouette, specifically designed to advance current Big Data state-of-the-art solutions. The newly proposed strategy has been tested and validated over both synthetic and real-world industrial use cases. To this aim, it has been included in a framework named SCALE and resulted to be efficient and more effective in assessing the degradation of prediction performance than current state-of-the-art best solutions.","PeriodicalId":335850,"journal":{"name":"2019 IEEE International Congress on Big Data (BigDataCongress)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Congress on Big Data (BigDataCongress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Evaluating the degradation of predictive models over time has always been a difficult task, also considering that new unseen data might not fit the training distribution. This is a well-known problem in real-world use cases, where collecting the historical training set for all possible prediction labels may be very hard, too expensive or completely unfeasible. To solve this issue, we present a new unsupervised approach to detect and evaluate the degradation of classification and prediction models, based on a scalable variant of the Silhouette index, named Descriptor Silhouette, specifically designed to advance current Big Data state-of-the-art solutions. The newly proposed strategy has been tested and validated over both synthetic and real-world industrial use cases. To this aim, it has been included in a framework named SCALE and resulted to be efficient and more effective in assessing the degradation of prediction performance than current state-of-the-art best solutions.