Structural Alignment based Zero-shot Classification for Remote Sensing Scenes

J. Quan, Chen Wu, Hongwei Wang, Zhiqiang Wang
{"title":"Structural Alignment based Zero-shot Classification for Remote Sensing Scenes","authors":"J. Quan, Chen Wu, Hongwei Wang, Zhiqiang Wang","doi":"10.1109/ICECOME.2018.8645056","DOIUrl":null,"url":null,"abstract":"Zero-shot classification aims to classify unseen classes instances without any training data. However, the problem of class structure in consistency between visual space and semantic space severely affects zero-shot classification performance for remote sensing scenes. In order to tackle this problem, we employ semi-supervised Sammon embedding algorithm to modify semantic space prototypes to have a more consistent class structure with visual space prototypes. Then, unseen class prototypes in visual space can be effectively synthesized by transferring unseen knowledge from semantic space to visual space. Thus, classification task could be ultimately accomplished by the nearest neighbor method with the unseen class prototypes in visual space. The proposed method is extensively evaluated on two benchmark remote sensing scenes datasets, achieving the state-of-the-art performance.","PeriodicalId":320397,"journal":{"name":"2018 IEEE International Conference on Electronics and Communication Engineering (ICECE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOME.2018.8645056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Zero-shot classification aims to classify unseen classes instances without any training data. However, the problem of class structure in consistency between visual space and semantic space severely affects zero-shot classification performance for remote sensing scenes. In order to tackle this problem, we employ semi-supervised Sammon embedding algorithm to modify semantic space prototypes to have a more consistent class structure with visual space prototypes. Then, unseen class prototypes in visual space can be effectively synthesized by transferring unseen knowledge from semantic space to visual space. Thus, classification task could be ultimately accomplished by the nearest neighbor method with the unseen class prototypes in visual space. The proposed method is extensively evaluated on two benchmark remote sensing scenes datasets, achieving the state-of-the-art performance.
基于结构对准的遥感场景零拍分类
零射击分类的目的是在没有任何训练数据的情况下对未见的类实例进行分类。然而,视觉空间和语义空间的类结构不一致的问题严重影响了遥感场景的零镜头分类性能。为了解决这一问题,我们采用半监督Sammon嵌入算法对语义空间原型进行修改,使其类结构与视觉空间原型更加一致。然后,通过将不可见的知识从语义空间转移到视觉空间,可以有效地合成视觉空间中不可见的类原型。因此,分类任务最终可以通过视觉空间中不可见的类原型的最近邻方法来完成。该方法在两个基准遥感场景数据集上进行了广泛的评估,达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信