A Comparative Study of Text Document Representation Approaches Using Point Placement-based Visualizations

Hevelyn Sthefany Lima de Carvalho, Vinícius R. P. Borges
{"title":"A Comparative Study of Text Document Representation Approaches Using Point Placement-based Visualizations","authors":"Hevelyn Sthefany Lima de Carvalho, Vinícius R. P. Borges","doi":"10.5753/sibgrapi.est.2021.20035","DOIUrl":null,"url":null,"abstract":"In natural language processing, text representation plays an important role which can affect the performance of language models and machine learning algorithms. Basic vector space models, such as the term frequency-inverse document frequency, became popular approaches to represent text documents. In the last years, approaches based on word embeddings have been proposed to preserve the meaning and semantic relations of words, phrases and texts. In this paper, we focus on studying the influences of different text representations to the quality of the 2D visual spaces (layouts) generated by state-of-art visualizations based on point placement. For that purpose, a visualizationassisted approach is proposed to support users when exploring such representations in classification tasks. Experimental results using two public labeled corpora were conducted to assess the quality of the layouts and to discuss possible relations to the classification performances. The results are promising, indicating that the proposed approach can guide users to understand the relevant patterns of a corpus in each representation.","PeriodicalId":110864,"journal":{"name":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2021.20035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In natural language processing, text representation plays an important role which can affect the performance of language models and machine learning algorithms. Basic vector space models, such as the term frequency-inverse document frequency, became popular approaches to represent text documents. In the last years, approaches based on word embeddings have been proposed to preserve the meaning and semantic relations of words, phrases and texts. In this paper, we focus on studying the influences of different text representations to the quality of the 2D visual spaces (layouts) generated by state-of-art visualizations based on point placement. For that purpose, a visualizationassisted approach is proposed to support users when exploring such representations in classification tasks. Experimental results using two public labeled corpora were conducted to assess the quality of the layouts and to discuss possible relations to the classification performances. The results are promising, indicating that the proposed approach can guide users to understand the relevant patterns of a corpus in each representation.
基于点放置的可视化文本文档表示方法的比较研究
在自然语言处理中,文本表示是影响语言模型和机器学习算法性能的重要因素。基本的向量空间模型,如术语频率逆文档频率,成为表示文本文档的流行方法。近年来,人们提出了基于词嵌入的方法来保留词、短语和文本的意义和语义关系。在本文中,我们重点研究了不同的文本表示方式对基于点放置的可视化生成的二维视觉空间(布局)质量的影响。为此,提出了一种可视化辅助方法来支持用户在分类任务中探索这些表示。使用两个公共标注的语料库进行实验,以评估布局的质量,并讨论可能与分类性能的关系。结果是有希望的,表明所提出的方法可以指导用户理解语料库中每个表示的相关模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信