Kernelized type-2 fuzzy c-means clustering algorithm in segmentation of noisy medical images

Prabhjot Kaur, I. M. S. Lamba, A. Gosain
{"title":"Kernelized type-2 fuzzy c-means clustering algorithm in segmentation of noisy medical images","authors":"Prabhjot Kaur, I. M. S. Lamba, A. Gosain","doi":"10.1109/RAICS.2011.6069361","DOIUrl":null,"url":null,"abstract":"The toughest challenges in medical diagnosis are uncertainty handling and noise. This paper presents a novel kernelized type-2 fuzzy c-means algorithm that is a generalization of conventional type-2 fuzzy c-means (T2FCM). Although T2FCM has proven effective for spherical data, it fails when the data structure of input patterns is non-spherical and complex. In this paper, we present a novel kernelized type-2 fuzzy c-means (KT2FCM) where type-2 fuzzy c-means is extended by adopting a kernel induced metric in the data space to replace the original Euclidean norm metric. Use of kernel function makes it possible to cluster data that is linearly non-separable in the original space into homogeneous groups in the transformed high dimensional space. From our experiments, we found that different kernel with different kernel widths lead to different clustering results. Thus a key point is to choose an appropriate value for the kernel width. Experimental are done using synthetic and real medical images (CT Scan and MR images) to show the effectiveness of method.","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The toughest challenges in medical diagnosis are uncertainty handling and noise. This paper presents a novel kernelized type-2 fuzzy c-means algorithm that is a generalization of conventional type-2 fuzzy c-means (T2FCM). Although T2FCM has proven effective for spherical data, it fails when the data structure of input patterns is non-spherical and complex. In this paper, we present a novel kernelized type-2 fuzzy c-means (KT2FCM) where type-2 fuzzy c-means is extended by adopting a kernel induced metric in the data space to replace the original Euclidean norm metric. Use of kernel function makes it possible to cluster data that is linearly non-separable in the original space into homogeneous groups in the transformed high dimensional space. From our experiments, we found that different kernel with different kernel widths lead to different clustering results. Thus a key point is to choose an appropriate value for the kernel width. Experimental are done using synthetic and real medical images (CT Scan and MR images) to show the effectiveness of method.
核化2型模糊c均值聚类算法在噪声医学图像分割中的应用
医疗诊断中最严峻的挑战是不确定性处理和噪声。本文提出了一种新的核化2型模糊c-均值算法,该算法是传统2型模糊c-均值算法的推广。虽然T2FCM已被证明对球形数据有效,但当输入模式的数据结构是非球形且复杂时,它就失效了。本文提出了一种新的核化2型模糊c-均值(KT2FCM),其中2型模糊c-均值通过在数据空间中采用核诱导度量来代替原始的欧氏范数度量来扩展。利用核函数可以将原始空间中线性不可分的数据聚类为变换后的高维空间中的齐次群。通过实验,我们发现不同核宽度的不同核会导致不同的聚类结果。因此,关键在于为内核宽度选择一个合适的值。用合成图像和真实医学图像(CT扫描和MR图像)进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信