GPU option pricing

Simon Suo, Ruiming Zhu, Ryan Attridge, J. Wan
{"title":"GPU option pricing","authors":"Simon Suo, Ruiming Zhu, Ryan Attridge, J. Wan","doi":"10.1145/2830556.2830564","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the possible approaches to harness extra computing power from commodity hardware to speedup pricing calculation of individual options. Specifically, we leverage two parallel computing platforms: Open Computing Language (OpenCL) and Compute United Device Architecture (CUDA). We propose several parallel implementations of the two most popular numerical methods of option pricing: Lattice model and Monte Carlo method. In the end, we show that the parallel implementations achieve significant performance improvement over serial implementations.","PeriodicalId":254831,"journal":{"name":"Proceedings of the 8th Workshop on High Performance Computational Finance","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Workshop on High Performance Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2830556.2830564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we explore the possible approaches to harness extra computing power from commodity hardware to speedup pricing calculation of individual options. Specifically, we leverage two parallel computing platforms: Open Computing Language (OpenCL) and Compute United Device Architecture (CUDA). We propose several parallel implementations of the two most popular numerical methods of option pricing: Lattice model and Monte Carlo method. In the end, we show that the parallel implementations achieve significant performance improvement over serial implementations.
GPU期权定价
在本文中,我们探讨了利用商品硬件的额外计算能力来加速单个期权的定价计算的可能方法。具体来说,我们利用了两个并行计算平台:开放计算语言(OpenCL)和计算联合设备架构(CUDA)。我们提出了两种最流行的期权定价数值方法的并行实现:晶格模型和蒙特卡罗方法。最后,我们证明了并行实现比串行实现取得了显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信