Gender classification using discrete cosine transformation: a comparison of different classifiers

A. Majid, A. Khan, A. M. Mirza
{"title":"Gender classification using discrete cosine transformation: a comparison of different classifiers","authors":"A. Majid, A. Khan, A. M. Mirza","doi":"10.1109/INMIC.2003.1416616","DOIUrl":null,"url":null,"abstract":"We have investigated the problem of gender classification using a library of four hundred standard frontal facial images employing five classifiers, namely k-means, k-nearest neighbors, linear discriminant analysis (LDA), Mahalanobis distance based (MDB) classifiers and our modified KNN classifier. The image data independent discrete cosine transformation (DCT) basis is used for facial feature extraction. Areas under the convex hull (AUCH) of the classifiers are measured by varying the values of threshold for each feature subset in the receiver operating characteristics (ROC) curve. The scalar values of AUCH of the ROC curve increases with increasing number of features. More features yield a better representation of the gender facial image. The overall performance of classifiers is compared with different values of AUCH versus features under different conditions. It has been observed that when the number of features is increased beyond 5, AUCH starts to saturate. Our experimental results demonstrate that modified-KNN performs better than the rest of the conventional classifiers under all conditions. The LDA classifier did not perform well in the DCT domain; however, it gradually improved its performance with increasing number of features","PeriodicalId":253329,"journal":{"name":"7th International Multi Topic Conference, 2003. INMIC 2003.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Multi Topic Conference, 2003. INMIC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2003.1416616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We have investigated the problem of gender classification using a library of four hundred standard frontal facial images employing five classifiers, namely k-means, k-nearest neighbors, linear discriminant analysis (LDA), Mahalanobis distance based (MDB) classifiers and our modified KNN classifier. The image data independent discrete cosine transformation (DCT) basis is used for facial feature extraction. Areas under the convex hull (AUCH) of the classifiers are measured by varying the values of threshold for each feature subset in the receiver operating characteristics (ROC) curve. The scalar values of AUCH of the ROC curve increases with increasing number of features. More features yield a better representation of the gender facial image. The overall performance of classifiers is compared with different values of AUCH versus features under different conditions. It has been observed that when the number of features is increased beyond 5, AUCH starts to saturate. Our experimental results demonstrate that modified-KNN performs better than the rest of the conventional classifiers under all conditions. The LDA classifier did not perform well in the DCT domain; however, it gradually improved its performance with increasing number of features
使用离散余弦变换的性别分类:不同分类器的比较
我们利用一个包含400张标准正面面部图像的库研究了性别分类问题,使用了5种分类器,即k-means、k-nearest neighbors、linear discriminant analysis (LDA)、Mahalanobis distance based (MDB)分类器和我们改进的KNN分类器。采用图像数据独立的离散余弦变换(DCT)基进行人脸特征提取。通过改变接收者工作特征(ROC)曲线中每个特征子集的阈值来测量分类器的凸壳下面积(AUCH)。ROC曲线的AUCH的标量值随着特征数量的增加而增加。更多的特征可以更好地代表性别面部图像。通过不同条件下不同的AUCH值与特征值对分类器的整体性能进行比较。已经观察到,当特征数增加到5个以上时,AUCH开始饱和。实验结果表明,在所有条件下,改进的knn分类器的性能都优于其他传统分类器。LDA分类器在DCT领域表现不佳;然而,随着功能的增加,它逐渐提高了性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信