/spl Delta/B/sup +/ tree: indexing 3D point sets for pattern discovery

Xiong Wang
{"title":"/spl Delta/B/sup +/ tree: indexing 3D point sets for pattern discovery","authors":"Xiong Wang","doi":"10.1109/ICDM.2002.1184033","DOIUrl":null,"url":null,"abstract":"Three-dimensional point sets can be used to represent data in different domains. Given a database of 3D point sets, pattern discovery looks for similar subsets that occur in multiple point sets. Geometric hashing has proved to be an effective technique in discovering patterns in 3D point sets. However, the method are has shortcomings. We propose a new indexing technique called /spl Delta/B/sup +/ trees. It is an extension of B/sup +/-trees that stores point triplet information and overcomes shortcomings of the geometric hashing technique. We introduce four different ways of constructing the key from a triplet. We give an analytical comparison between the new index structure and the geometric hashing technique. We also conduct experiments on both synthetic data and real data to evaluate performance.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Three-dimensional point sets can be used to represent data in different domains. Given a database of 3D point sets, pattern discovery looks for similar subsets that occur in multiple point sets. Geometric hashing has proved to be an effective technique in discovering patterns in 3D point sets. However, the method are has shortcomings. We propose a new indexing technique called /spl Delta/B/sup +/ trees. It is an extension of B/sup +/-trees that stores point triplet information and overcomes shortcomings of the geometric hashing technique. We introduce four different ways of constructing the key from a triplet. We give an analytical comparison between the new index structure and the geometric hashing technique. We also conduct experiments on both synthetic data and real data to evaluate performance.
/spl Delta/B/sup +/ tree:为模式发现索引3D点集
三维点集可以用来表示不同领域的数据。给定一个三维点集的数据库,模式发现寻找出现在多个点集中的相似子集。几何哈希已被证明是一种有效的发现三维点集模式的技术。然而,这种方法也有不足之处。我们提出了一种新的索引技术,称为/spl Delta/B/sup +/ trees。它是B/sup +/-树的扩展,用于存储点三元组信息,克服了几何散列技术的缺点。我们将介绍从三元组构造键的四种不同方法。我们给出了新的索引结构和几何哈希技术的分析比较。我们还对合成数据和真实数据进行了实验,以评估性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信