{"title":"Myocardial iron overload","authors":"J. Carpenter, J. Wood, D. Pennell","doi":"10.1093/med/9780198779735.003.0033","DOIUrl":null,"url":null,"abstract":"The heart is the target lethal organ in thalassaemia major. Cardiovascular magnetic resonance (CMR) measures iron using the magnetic relaxation time T2*. This allows comparison with the left ventricular function and conventional iron measurements such as liver iron and serum ferritin. The single breath-hold cardiac-gated CMR acquisition takes only 15 seconds, making it cost-efficient and relevant to developing countries. Myocardial T2* of <20 ms (increased iron) correlates with reduced left ventricular ejection fraction, but poor correlation exists with ferritin and liver iron, indicating poor capability to assess future risk. Myocardial T2* of <10 ms is present in >90% of thalassaemia patients developing heart failure, and approximately 50% of patients with T2* of <6 ms will develop heart failure within 1 year without intensified treatment. The technique is validated and calibrated against human heart iron concentration. The treatment for iron overload is iron chelation, and three major trials have been performed for the heart. The first trial showed deferiprone was superior to deferoxamine in removing cardiac iron. The second trial showed a combination therapy of deferiprone with deferoxamine was more effective than deferoxamine monotherapy. The third trial showed that deferasirox was non-inferior to deferoxamine in removing cardiac iron. Each drug in suitable doses can be used to remove cardiac iron, but their use depends on clinical circumstances. Other combination regimes are also being evaluated. Use of T2*, intensification of chelation treatment, and use of deferiprone are associated with reduced mortality (a reduction in deaths by 71% has been shown in the United Kingdom). The use of T2* and iron chelators in the heart has been summarized in recent American Heart Association guidelines.","PeriodicalId":294042,"journal":{"name":"The EACVI Textbook of Cardiovascular Magnetic Resonance","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EACVI Textbook of Cardiovascular Magnetic Resonance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/med/9780198779735.003.0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The heart is the target lethal organ in thalassaemia major. Cardiovascular magnetic resonance (CMR) measures iron using the magnetic relaxation time T2*. This allows comparison with the left ventricular function and conventional iron measurements such as liver iron and serum ferritin. The single breath-hold cardiac-gated CMR acquisition takes only 15 seconds, making it cost-efficient and relevant to developing countries. Myocardial T2* of <20 ms (increased iron) correlates with reduced left ventricular ejection fraction, but poor correlation exists with ferritin and liver iron, indicating poor capability to assess future risk. Myocardial T2* of <10 ms is present in >90% of thalassaemia patients developing heart failure, and approximately 50% of patients with T2* of <6 ms will develop heart failure within 1 year without intensified treatment. The technique is validated and calibrated against human heart iron concentration. The treatment for iron overload is iron chelation, and three major trials have been performed for the heart. The first trial showed deferiprone was superior to deferoxamine in removing cardiac iron. The second trial showed a combination therapy of deferiprone with deferoxamine was more effective than deferoxamine monotherapy. The third trial showed that deferasirox was non-inferior to deferoxamine in removing cardiac iron. Each drug in suitable doses can be used to remove cardiac iron, but their use depends on clinical circumstances. Other combination regimes are also being evaluated. Use of T2*, intensification of chelation treatment, and use of deferiprone are associated with reduced mortality (a reduction in deaths by 71% has been shown in the United Kingdom). The use of T2* and iron chelators in the heart has been summarized in recent American Heart Association guidelines.