Tensor comprehensions in SaC

S. Scholz, Artjoms Šinkarovs
{"title":"Tensor comprehensions in SaC","authors":"S. Scholz, Artjoms Šinkarovs","doi":"10.1145/3412932.3412947","DOIUrl":null,"url":null,"abstract":"We propose a new notation for data parallel operators on multi-dimensional arrays named tensor comprehensions. This notation combines the basic principle of array-comprehensions with syntactical shortcuts very close to those found in the so-called Tensor Notations used in Physics and Mathematics. As a result, complex operators with rich semantics can be defined concisely. The key to this conciseness lies in the ability to define shape-polymorphic operations combined with the ability to infer array shapes from the immediate context. The paper provides a definition of the proposed notation, a formal shape inference process, as well as a set of re-write rules that translates tensor comprehensions as a zero-cost syntactic sugar into standard SaC expressions.","PeriodicalId":235054,"journal":{"name":"Proceedings of the 31st Symposium on Implementation and Application of Functional Languages","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st Symposium on Implementation and Application of Functional Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412932.3412947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a new notation for data parallel operators on multi-dimensional arrays named tensor comprehensions. This notation combines the basic principle of array-comprehensions with syntactical shortcuts very close to those found in the so-called Tensor Notations used in Physics and Mathematics. As a result, complex operators with rich semantics can be defined concisely. The key to this conciseness lies in the ability to define shape-polymorphic operations combined with the ability to infer array shapes from the immediate context. The paper provides a definition of the proposed notation, a formal shape inference process, as well as a set of re-write rules that translates tensor comprehensions as a zero-cost syntactic sugar into standard SaC expressions.
SaC中的张量推导
本文提出了多维数组上数据并行运算符的一种新的符号——张量推导。这种表示法结合了数组推导的基本原理和语法捷径,与物理和数学中所谓的张量表示法非常接近。因此,可以简明地定义具有丰富语义的复杂操作符。这种简明性的关键在于定义形状多态操作的能力,以及从直接上下文推断数组形状的能力。本文提供了所提出的符号的定义,一个形式化的形状推理过程,以及一组重写规则,将张量推导作为零成本语法糖转换为标准SaC表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信