Solar harvest prediction supported by cloud cover forecasts

ENSSys '13 Pub Date : 2013-11-13 DOI:10.1145/2534208.2534210
C. Renner
{"title":"Solar harvest prediction supported by cloud cover forecasts","authors":"C. Renner","doi":"10.1145/2534208.2534210","DOIUrl":null,"url":null,"abstract":"Solar harvest prediction is used in energy-harvesting sensor networks to achieve perpetual node operation. Existing approaches only exploit local knowledge and thus fail in unforeseeable, changing weather conditions. We investigate the benefit of incorporating global knowledge in terms of fractional sky cloudiness, so-called cloud cover. We propose and evaluate two methods that combine local information of a node's harvest pattern with global cloud cover forecasts. We evaluate their performance with solar traces collected by three solar-harvesting sensor nodes and compare the results with existing prediction algorithms. We find that (i) harvest predictions using cloud cover forecasts improve overall prediction precision, (ii) prediction errors in changing weather conditions are considerably reduced, and (iii) coarse-grained cloud cover forecasts require low extra network traffic while sacrificing little prediction precision.","PeriodicalId":155579,"journal":{"name":"ENSSys '13","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENSSys '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534208.2534210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Solar harvest prediction is used in energy-harvesting sensor networks to achieve perpetual node operation. Existing approaches only exploit local knowledge and thus fail in unforeseeable, changing weather conditions. We investigate the benefit of incorporating global knowledge in terms of fractional sky cloudiness, so-called cloud cover. We propose and evaluate two methods that combine local information of a node's harvest pattern with global cloud cover forecasts. We evaluate their performance with solar traces collected by three solar-harvesting sensor nodes and compare the results with existing prediction algorithms. We find that (i) harvest predictions using cloud cover forecasts improve overall prediction precision, (ii) prediction errors in changing weather conditions are considerably reduced, and (iii) coarse-grained cloud cover forecasts require low extra network traffic while sacrificing little prediction precision.
由云覆盖预测支持的太阳收获预测
在能量收集传感器网络中,利用太阳收获预测实现节点永续运行。现有的方法只利用了当地的知识,因此在不可预见的、不断变化的天气条件下失败了。我们研究了将全球知识纳入分数天空云量(即所谓的云量)的好处。我们提出并评估了两种将节点收获模式的局部信息与全球云量预报相结合的方法。我们用三个太阳能收集传感器节点收集的太阳轨迹来评估它们的性能,并将结果与现有的预测算法进行比较。我们发现(i)使用云覆盖预报的收成预测提高了整体预测精度,(ii)在变化的天气条件下的预测误差大大减少,(iii)粗粒度云覆盖预报需要的额外网络流量很少,而牺牲的预测精度很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信