A Noise-Robust EASI Algorithm for Noisy Blind Interference-Signal Separation

Yu-ling Duan, Hang Zhang
{"title":"A Noise-Robust EASI Algorithm for Noisy Blind Interference-Signal Separation","authors":"Yu-ling Duan, Hang Zhang","doi":"10.1109/CyberC.2011.92","DOIUrl":null,"url":null,"abstract":"This paper presents an improved Equivariant Adaptive Separation via Independence (EASI) algorithm to deal with the blind interference-signal separation in the noisy circumstance. This algorithm gets an unbiased estimate for separation matrix by adopting the noise bias removal technique, then, eliminates the noise in the estimate signals according to the probability density function (PDF) of the noise farther. The simulation result shows that the separation performance of the proposed algorithm is better and the error bit ratio (BER) is lower than those of the conventional EASI algorithm under the same signal noise ratio (SNR) case.","PeriodicalId":227472,"journal":{"name":"2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2011.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an improved Equivariant Adaptive Separation via Independence (EASI) algorithm to deal with the blind interference-signal separation in the noisy circumstance. This algorithm gets an unbiased estimate for separation matrix by adopting the noise bias removal technique, then, eliminates the noise in the estimate signals according to the probability density function (PDF) of the noise farther. The simulation result shows that the separation performance of the proposed algorithm is better and the error bit ratio (BER) is lower than those of the conventional EASI algorithm under the same signal noise ratio (SNR) case.
噪声盲干扰信号分离的EASI算法
针对噪声环境下的盲干扰信号分离问题,提出了一种改进的等变独立自适应分离(EASI)算法。该算法采用噪声去偏技术对分离矩阵进行无偏估计,然后根据噪声的概率密度函数(PDF)进一步消除估计信号中的噪声。仿真结果表明,在信噪比相同的情况下,该算法的分离性能优于传统的EASI算法,误码率(BER)低于传统的EASI算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信