{"title":"Adaptive wavelet neural network for short-term wind farm forecast","authors":"Jennifer Vanessa Mejía Lara, R. Velásquez","doi":"10.1109/EIRCON52903.2021.9613642","DOIUrl":null,"url":null,"abstract":"In this research article, it has been implemented an spatio-temporal active power (AP) forecast based on the Kriging theory and Adaptive wavelet neural network (AWNN) by using Julia Programming; it considers the wind speed (WS) characteristics of highly stochastic and random features with non-stationary data, with data calibrated with 21 years of data (2000 to 2021); it is considered with the influence; the physical model is structured by Kriging theory for the wind speed at hub height, according the manufacturer curve in the wind farm, the model is a input in the statistical model for the active power forecast. Our findings are the improved accuracy compared with the ARX 72.4%, ARMAX 75.5% and fuzzy 81.1% approaches, by using spatio-temporal wind forecasts, the accuracy is increased as 89.2%.","PeriodicalId":403519,"journal":{"name":"2021 IEEE Engineering International Research Conference (EIRCON)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Engineering International Research Conference (EIRCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIRCON52903.2021.9613642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this research article, it has been implemented an spatio-temporal active power (AP) forecast based on the Kriging theory and Adaptive wavelet neural network (AWNN) by using Julia Programming; it considers the wind speed (WS) characteristics of highly stochastic and random features with non-stationary data, with data calibrated with 21 years of data (2000 to 2021); it is considered with the influence; the physical model is structured by Kriging theory for the wind speed at hub height, according the manufacturer curve in the wind farm, the model is a input in the statistical model for the active power forecast. Our findings are the improved accuracy compared with the ARX 72.4%, ARMAX 75.5% and fuzzy 81.1% approaches, by using spatio-temporal wind forecasts, the accuracy is increased as 89.2%.