Where's the Bear? - Automating Wildlife Image Processing Using IoT and Edge Cloud Systems

Andy Rosales Elias, Nevena Golubovic, C. Krintz, R. Wolski
{"title":"Where's the Bear? - Automating Wildlife Image Processing Using IoT and Edge Cloud Systems","authors":"Andy Rosales Elias, Nevena Golubovic, C. Krintz, R. Wolski","doi":"10.1145/3054977.3054986","DOIUrl":null,"url":null,"abstract":"We investigate the design and implementation of Where's The Bear (WTB), an end-to-end, distributed, IoT system for wildlife monitoring.WTB implements a multi-tier (cloud, edge, sensing) system that integrates recent advances in machine learning based image processing to automatically classify animals in images from remote, motion-triggered camera traps.We use non-local, resource-rich, public/private cloud systems to train the machine learning models, and ``in-the-field,'' resource-constrained edge systems to perform classification near the IoT sensing devices (cameras).We deploy WTB at the UCSB Sedgwick Reserve, a 6000 acre site for environmental research and use it to aggregate, manage, and analyze over 1.12M images.WTB integrates Google TensorFlow and OpenCV applications to perform automatic classification and tagging for a subset of these images.To avoid transferring large numbers of training images for TensorFlow over a low-bandwidth network linking Sedgwick to the public/private clouds, we devise a technique that uses stock Google Images to construct a synthetic training set using only a small number of empty, background images from Sedgwick.Our system is able to accurately identify bears, deer, coyotes, and empty images and significantly reduces the time and bandwidth requirements for image transfer, as well as end-user analysis time, since WTB automatically filters the images on-site.","PeriodicalId":179120,"journal":{"name":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3054977.3054986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

We investigate the design and implementation of Where's The Bear (WTB), an end-to-end, distributed, IoT system for wildlife monitoring.WTB implements a multi-tier (cloud, edge, sensing) system that integrates recent advances in machine learning based image processing to automatically classify animals in images from remote, motion-triggered camera traps.We use non-local, resource-rich, public/private cloud systems to train the machine learning models, and ``in-the-field,'' resource-constrained edge systems to perform classification near the IoT sensing devices (cameras).We deploy WTB at the UCSB Sedgwick Reserve, a 6000 acre site for environmental research and use it to aggregate, manage, and analyze over 1.12M images.WTB integrates Google TensorFlow and OpenCV applications to perform automatic classification and tagging for a subset of these images.To avoid transferring large numbers of training images for TensorFlow over a low-bandwidth network linking Sedgwick to the public/private clouds, we devise a technique that uses stock Google Images to construct a synthetic training set using only a small number of empty, background images from Sedgwick.Our system is able to accurately identify bears, deer, coyotes, and empty images and significantly reduces the time and bandwidth requirements for image transfer, as well as end-user analysis time, since WTB automatically filters the images on-site.
熊在哪里?-使用物联网和边缘云系统自动化野生动物图像处理
我们研究了Where's the Bear (WTB)的设计和实现,这是一个用于野生动物监测的端到端分布式物联网系统。WTB实现了一个多层(云、边缘、传感)系统,该系统集成了基于机器学习的图像处理的最新进展,可以自动对来自远程、运动触发相机陷阱的图像中的动物进行分类。我们使用非本地、资源丰富的公共/私有云系统来训练机器学习模型,并使用“现场”、资源受限的边缘系统在物联网传感设备(摄像头)附近执行分类。我们在UCSB塞奇威克保护区部署了WTB,这是一个6000英亩的环境研究场地,并使用它来汇总、管理和分析超过112万张图像。WTB集成谷歌TensorFlow和OpenCV应用程序,对这些图像的一个子集执行自动分类和标记。为了避免在连接Sedgwick到公共/私有云的低带宽网络上为TensorFlow传输大量训练图像,我们设计了一种技术,该技术使用库存谷歌图像,仅使用来自Sedgwick的少量空背景图像构建合成训练集。我们的系统能够准确地识别熊、鹿、土狼和空图像,并显着减少了图像传输的时间和带宽要求,以及最终用户的分析时间,因为WTB会在现场自动过滤图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信