{"title":"CPU reservations and time constraints: efficient, predictable scheduling of independent activities","authors":"Michael B. Jones, D. Rosu, Marcel-Catalin Rosu","doi":"10.1145/268998.266689","DOIUrl":null,"url":null,"abstract":"Workstations and personal computers are increasingly being used for applications with real-time characteristics such as speech understanding and synthesis, media computations and I/O, and animation, often concurrently executed with traditional non-real-time workloads. This paper presents a system that can schedule multiple independent activities so that: . activities can obtain minimum guaranteed execution rates with application-specified reservation granularities via CPU Reservations, CPU Reservations, which are of the form reserve X units of time out of every Y units, provide not just an average case execution rate of X/Y over long periods of time, but the stronger guarantee that from any instant of time, by Y time units later, the activity will have executed for at least X time units, . applications can use Time Constraints to schedule tasks by deadlines, with on-time completion guaranteed for tasks with accepted constraints, and . both CPU Reservations and Time Constraints are implemented very efficiently. In particular, . CPU scheduling overhead is bounded by a constant and is not a function of the number of schedulable tasks. Other key scheduler properties are: . activities cannot violate other activities' guarantees, . time constraints and CPU reservations may be used together, separately, or not at all (which gives a round-robin schedule), with well-defined interactions between all combinations, and . spare CPU time is fairly shared among all activities. The Rialto operating system, developed at Microsoft Research, achieves these goals by using a precomputed schedule, which is the fundamental basis of this work.","PeriodicalId":340271,"journal":{"name":"Proceedings of the sixteenth ACM symposium on Operating systems principles","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"361","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the sixteenth ACM symposium on Operating systems principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/268998.266689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 361
Abstract
Workstations and personal computers are increasingly being used for applications with real-time characteristics such as speech understanding and synthesis, media computations and I/O, and animation, often concurrently executed with traditional non-real-time workloads. This paper presents a system that can schedule multiple independent activities so that: . activities can obtain minimum guaranteed execution rates with application-specified reservation granularities via CPU Reservations, CPU Reservations, which are of the form reserve X units of time out of every Y units, provide not just an average case execution rate of X/Y over long periods of time, but the stronger guarantee that from any instant of time, by Y time units later, the activity will have executed for at least X time units, . applications can use Time Constraints to schedule tasks by deadlines, with on-time completion guaranteed for tasks with accepted constraints, and . both CPU Reservations and Time Constraints are implemented very efficiently. In particular, . CPU scheduling overhead is bounded by a constant and is not a function of the number of schedulable tasks. Other key scheduler properties are: . activities cannot violate other activities' guarantees, . time constraints and CPU reservations may be used together, separately, or not at all (which gives a round-robin schedule), with well-defined interactions between all combinations, and . spare CPU time is fairly shared among all activities. The Rialto operating system, developed at Microsoft Research, achieves these goals by using a precomputed schedule, which is the fundamental basis of this work.