27.3 A 3-axis open-loop gyroscope with demodulation phase error correction

C. Ezekwe, W. Geiger, T. Ohms
{"title":"27.3 A 3-axis open-loop gyroscope with demodulation phase error correction","authors":"C. Ezekwe, W. Geiger, T. Ohms","doi":"10.1109/ISSCC.2015.7063134","DOIUrl":null,"url":null,"abstract":"Consumer-electronic (CE) gyroscopes have recently enjoyed broad deployment in high-volume applications, largely due to intuitive user interfaces in smart phones and video game controllers. For their continued expansion into more demanding CE applications, a further reduction of their noise, offset drift, and power dissipation, especially in the emerging always-on category, is mandatory. To be viable, solutions to these conflicting requirements must overcome the challenges of low cost and ever-shrinking package size. This paper describes one such solution with special emphasis on offset drift reduction. The system presented here discards the standard practice of electrically cancelling the quadrature error, and instead combines information derived from continuously monitoring the quadrature error together with a single-point temperature calibration to reduce offset drift. This paper presents the architecture and circuits used to realize a 3-axis open-loop gyroscope with a one-sigma TCO of 0.0065°/s/K.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Consumer-electronic (CE) gyroscopes have recently enjoyed broad deployment in high-volume applications, largely due to intuitive user interfaces in smart phones and video game controllers. For their continued expansion into more demanding CE applications, a further reduction of their noise, offset drift, and power dissipation, especially in the emerging always-on category, is mandatory. To be viable, solutions to these conflicting requirements must overcome the challenges of low cost and ever-shrinking package size. This paper describes one such solution with special emphasis on offset drift reduction. The system presented here discards the standard practice of electrically cancelling the quadrature error, and instead combines information derived from continuously monitoring the quadrature error together with a single-point temperature calibration to reduce offset drift. This paper presents the architecture and circuits used to realize a 3-axis open-loop gyroscope with a one-sigma TCO of 0.0065°/s/K.
27.3带解调相位误差校正的三轴开环陀螺仪
消费电子(CE)陀螺仪最近在大批量应用中得到了广泛部署,这主要是由于智能手机和视频游戏控制器中直观的用户界面。为了将其扩展到更苛刻的CE应用中,进一步降低其噪声,偏移漂移和功耗,特别是在新兴的永开类别中,是强制性的。为了可行,这些相互冲突的需求的解决方案必须克服低成本和不断缩小的封装尺寸的挑战。本文描述了一种这样的解决方案,特别强调了偏移漂移的减少。该系统抛弃了电消除正交误差的标准做法,而是将连续监测正交误差的信息与单点温度校准相结合,以减少偏置漂移。本文介绍了一种TCO为0.0065°/s/K的三轴开环陀螺仪的结构和电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信