Conditional multi-output regression

Chao Yuan
{"title":"Conditional multi-output regression","authors":"Chao Yuan","doi":"10.1109/IJCNN.2011.6033220","DOIUrl":null,"url":null,"abstract":"In multi-output regression, the goal is to establish a mapping from inputs to multivariate outputs that are often assumed unknown. However, in practice, some outputs may become available. How can we use this extra information to improve our prediction on the remaining outputs? For example, can we use the job data released today to better predict the house sales data to be released tomorrow? Most previous approaches use a single generative model to model the joint predictive distribution of all outputs, based on which unknown outputs are inferred conditionally from the known outputs. However, learning such a joint distribution for all outputs is very challenging and also unnecessary if our goal is just to predict each of the unknown outputs. We propose a conditional model to directly model the conditional probability of a target output on both inputs and all other outputs. A simple generative model is used to infer other outputs if they are unknown. Both models only consist of standard regression predictors, for example, Gaussian process, which can be easily learned.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In multi-output regression, the goal is to establish a mapping from inputs to multivariate outputs that are often assumed unknown. However, in practice, some outputs may become available. How can we use this extra information to improve our prediction on the remaining outputs? For example, can we use the job data released today to better predict the house sales data to be released tomorrow? Most previous approaches use a single generative model to model the joint predictive distribution of all outputs, based on which unknown outputs are inferred conditionally from the known outputs. However, learning such a joint distribution for all outputs is very challenging and also unnecessary if our goal is just to predict each of the unknown outputs. We propose a conditional model to directly model the conditional probability of a target output on both inputs and all other outputs. A simple generative model is used to infer other outputs if they are unknown. Both models only consist of standard regression predictors, for example, Gaussian process, which can be easily learned.
条件多输出回归
在多输出回归中,目标是建立一个从输入到多变量输出的映射,这些多变量输出通常被假设为未知。不过,在实践中,可能会有一些产出。我们如何使用这些额外的信息来改进对剩余输出的预测?例如,我们可以用今天发布的就业数据来更好地预测明天要发布的房屋销售数据吗?大多数以前的方法使用一个单一的生成模型来模拟所有输出的联合预测分布,在此基础上,从已知输出有条件地推断未知输出。然而,如果我们的目标只是预测每个未知的输出,那么学习所有输出的联合分布是非常具有挑战性的,也是不必要的。我们提出了一个条件模型来直接模拟目标输出在输入和所有其他输出上的条件概率。一个简单的生成模型用于推断未知的其他输出。这两种模型都只包含标准回归预测因子,例如高斯过程,这很容易学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信