A remark on unipotent groups of characteristic p>0

Tetsuo Nakamura
{"title":"A remark on unipotent groups of characteristic p>0","authors":"Tetsuo Nakamura","doi":"10.2996/KMJ/1138846313","DOIUrl":null,"url":null,"abstract":"Borel and Springer [1] deal with a unipotent group U defined over a field of prime characteristic p and investigate the conditions of the existence of the one dimensional subgroup to which a given element of the Lie algebra L(U) of U is tangent. They use the lemma (9. 15) (ii) (p. 493) in the proof of the last theorem (9. 16) (ii) (p. 495). In this report we shall show that this lemma is not correct (cf. §2). But a modification of it does not disturb the truth of the theorem. Moreover we want to show that the theorem (9. 16) (iii) in [1] is still true under a weaker assumption (cf. § 1). The notations in this report are the same as in [1].","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/KMJ/1138846313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Borel and Springer [1] deal with a unipotent group U defined over a field of prime characteristic p and investigate the conditions of the existence of the one dimensional subgroup to which a given element of the Lie algebra L(U) of U is tangent. They use the lemma (9. 15) (ii) (p. 493) in the proof of the last theorem (9. 16) (ii) (p. 495). In this report we shall show that this lemma is not correct (cf. §2). But a modification of it does not disturb the truth of the theorem. Moreover we want to show that the theorem (9. 16) (iii) in [1] is still true under a weaker assumption (cf. § 1). The notations in this report are the same as in [1].
关于特征p>0的幂偶群的一个注解
Borel和施普林格[1]处理定义在素数特征p域上的单幂群U,研究了U的李代数L(U)的一个给定元素与之相切的一维子群存在的条件。他们使用引理(9)(15) (ii)(第493页)证明最后一个定理(9)。16) (ii)(第495页)。在这个报告中,我们要证明这个引理是不正确的(参看§2)。但是对它的修改并不会影响定理的真实性。此外,我们还想证明定理(9。16)在较弱的假设下,[1]中的(iii)仍然成立(参见§1)。本报告中的注释与[1]中的相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信