Unsupervised Anomaly Detection for Container Cloud Via BILSTM-Based Variational Auto-Encoder

Yulong Wang, Xingshu Chen, Qixu Wang, Run Yang, Bangzhou Xin
{"title":"Unsupervised Anomaly Detection for Container Cloud Via BILSTM-Based Variational Auto-Encoder","authors":"Yulong Wang, Xingshu Chen, Qixu Wang, Run Yang, Bangzhou Xin","doi":"10.1109/icassp43922.2022.9747341","DOIUrl":null,"url":null,"abstract":"The appearance of container technology has profoundly changed the development and deployment of multi-tier distributed applications. However, the imperfect system resource isolation features and the kernel-sharing mechanism will introduce significant security risks to the container-based cloud. In this paper, we propose a real-time unsupervised anomaly detection system for monitoring system calls in container cloud via BiLSTM-based variational auto-encoder (VAE). Our proposed BiLSTM-based VAE network leverages the generative characteristics of VAE to learn the robust representations of normal patterns by reconstruction probabilities while being sensitive to long-term dependencies. Our evaluations using real-world datasets show that the BiLSTM-based VAE network achieves excellent detection performance without introducing significant running performance overhead to the container platform.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The appearance of container technology has profoundly changed the development and deployment of multi-tier distributed applications. However, the imperfect system resource isolation features and the kernel-sharing mechanism will introduce significant security risks to the container-based cloud. In this paper, we propose a real-time unsupervised anomaly detection system for monitoring system calls in container cloud via BiLSTM-based variational auto-encoder (VAE). Our proposed BiLSTM-based VAE network leverages the generative characteristics of VAE to learn the robust representations of normal patterns by reconstruction probabilities while being sensitive to long-term dependencies. Our evaluations using real-world datasets show that the BiLSTM-based VAE network achieves excellent detection performance without introducing significant running performance overhead to the container platform.
基于bilstm的变分自编码器的容器云无监督异常检测
容器技术的出现深刻地改变了多层分布式应用程序的开发和部署。然而,不完善的系统资源隔离特性和内核共享机制将给基于容器的云带来重大的安全风险。本文提出了一种基于bilstm的变分自编码器(VAE)的实时无监督异常检测系统,用于监控容器云中的系统调用。我们提出的基于bilstm的VAE网络利用VAE的生成特性,通过重构概率学习正常模式的鲁棒表示,同时对长期依赖关系敏感。我们使用真实数据集进行的评估表明,基于bilstm的VAE网络在不给容器平台带来显著运行性能开销的情况下实现了出色的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信