Performance Benchmark of Machine Learning-Based Methodology for Swahili News Article Categorization

Shaun Anthony Little, Kaushik Roy, Ahmed Al Hamoud
{"title":"Performance Benchmark of Machine Learning-Based Methodology for Swahili News Article Categorization","authors":"Shaun Anthony Little, Kaushik Roy, Ahmed Al Hamoud","doi":"10.1109/ICMLA55696.2022.00238","DOIUrl":null,"url":null,"abstract":"As data increases at unprecedented rates, so does the need to classify this data, including news article data. Unfortunately, most news article categorization research utilizes global languages such as English or Spanish, and not much research considers low-resource languages like Swahili. Testing multiple classifiers and preprocessing methods, we show that the SVM model with tokenization and stop word removal has the highest accuracy (85.13%) scores for Swahili news article categorization. These results from the first publicly available peer-reviewed Swahili news article dataset provide benchmark performance for Swahili news article categorization and contribute to lean Swahili text classification research.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As data increases at unprecedented rates, so does the need to classify this data, including news article data. Unfortunately, most news article categorization research utilizes global languages such as English or Spanish, and not much research considers low-resource languages like Swahili. Testing multiple classifiers and preprocessing methods, we show that the SVM model with tokenization and stop word removal has the highest accuracy (85.13%) scores for Swahili news article categorization. These results from the first publicly available peer-reviewed Swahili news article dataset provide benchmark performance for Swahili news article categorization and contribute to lean Swahili text classification research.
基于机器学习的斯瓦希里语新闻分类方法的性能基准
随着数据以前所未有的速度增长,对这些数据(包括新闻文章数据)进行分类的需求也在增加。不幸的是,大多数新闻文章分类研究都使用英语或西班牙语等全球语言,而很少有研究考虑像斯瓦希里语这样的低资源语言。通过对多个分类器和预处理方法的测试,我们发现带有标记化和停止词去除的SVM模型对斯瓦希里语新闻文章分类的准确率最高(85.13%)。这些结果来自第一个公开可用的同行评审的斯瓦希里语新闻文章数据集,为斯瓦希里语新闻文章分类提供了基准性能,并有助于精益斯瓦希里语文本分类研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信