Spectral Correspondence Using Local Similarity Analysis

Jun Tang, Dong Liang, Nian Wang, Zhaohong Jia
{"title":"Spectral Correspondence Using Local Similarity Analysis","authors":"Jun Tang, Dong Liang, Nian Wang, Zhaohong Jia","doi":"10.1109/CIS.2007.74","DOIUrl":null,"url":null,"abstract":"This paper presents a novel algorithm for point correspondences using graph spectral analysis. Firstly, the correspondence probabilities are computed by using the eigenvectors and eigenvalues of the proximity matrix as well as the method of alternated row and column normalizations. Secondly, local similarity evaluated by shape context is incorporated into our spectral method to refine the results of spectral correspondence via a probabilistic relaxation approach. Experiments on both real-world and synthetic data show that our method possesses comparatively high accuracy.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"44 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a novel algorithm for point correspondences using graph spectral analysis. Firstly, the correspondence probabilities are computed by using the eigenvectors and eigenvalues of the proximity matrix as well as the method of alternated row and column normalizations. Secondly, local similarity evaluated by shape context is incorporated into our spectral method to refine the results of spectral correspondence via a probabilistic relaxation approach. Experiments on both real-world and synthetic data show that our method possesses comparatively high accuracy.
基于局部相似度分析的光谱对应
本文提出了一种基于图谱分析的点对应算法。首先,利用接近矩阵的特征向量和特征值以及行、列交替归一化方法计算对应概率;其次,将基于形状上下文的局部相似度评估方法引入到谱方法中,通过概率松弛方法改进谱对应结果。在实际数据和合成数据上的实验表明,该方法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信