{"title":"Advanced hybrid system for solar car","authors":"Vineeth V. Vincent, S. Kamalakkannan","doi":"10.1109/ICCPEIC.2013.6778515","DOIUrl":null,"url":null,"abstract":"A three-input hybrid system for solar car is designed in this project. It consists of one unidirectional input power port and two bidirectional power ports with a storage element. Depending on utilization state of the battery, three different power operation modes are defined for the converter. Battery charging in the system is carried out from the amorphous solar panel mounted on the body and a solar energy harvesting charging station. Since the solar energy is directly given to the DC load, the efficiency of the system will improve. The capacitor which is connected to the lead acid battery will charge at off peak hours and discharge during the acceleration time of the car. In this proposed system energy wasted in the brakes are also recovered and used to charge the lead acid battery. Hence competent Hybrid Electric Vehicle was developed by using super capacitor and regenerative braking scheme.","PeriodicalId":411175,"journal":{"name":"2013 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)","volume":"14 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPEIC.2013.6778515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A three-input hybrid system for solar car is designed in this project. It consists of one unidirectional input power port and two bidirectional power ports with a storage element. Depending on utilization state of the battery, three different power operation modes are defined for the converter. Battery charging in the system is carried out from the amorphous solar panel mounted on the body and a solar energy harvesting charging station. Since the solar energy is directly given to the DC load, the efficiency of the system will improve. The capacitor which is connected to the lead acid battery will charge at off peak hours and discharge during the acceleration time of the car. In this proposed system energy wasted in the brakes are also recovered and used to charge the lead acid battery. Hence competent Hybrid Electric Vehicle was developed by using super capacitor and regenerative braking scheme.