Junwei Liang, Lu Jiang, Deyu Meng, Alexander Hauptmann
{"title":"Leveraging Multi-modal Prior Knowledge for Large-scale Concept Learning in Noisy Web Data","authors":"Junwei Liang, Lu Jiang, Deyu Meng, Alexander Hauptmann","doi":"10.1145/3078971.3079003","DOIUrl":null,"url":null,"abstract":"Learning video concept detectors automatically from the big but noisy web data with no additional manual annotations is a novel but challenging area in the multimedia and the machine learning community. A considerable amount of videos on the web is associated with rich but noisy contextual information, such as the title and other multi-modal information, which provides weak annotations or labels about the video content. To tackle the problem of large-scale noisy learning, We propose a novel method called Multi-modal WEbly-Labeled Learning (WELL-MM), which is established on the state-of-the-art machine learning algorithm inspired by the learning process of human. WELL-MM introduces a novel multi-modal approach to incorporate meaningful prior knowledge called curriculum from the noisy web videos. We empirically study the curriculum constructed from the multi-modal features of the Internet videos and images. The comprehensive experimental results on FCVID and YFCC100M demonstrate that WELL-MM outperforms state-of-the-art studies by a statically significant margin on learning concepts from noisy web video data. In addition, the results also verify that WELL-MM is robust to the level of noisiness in the video data. Notably, WELL-MM trained on sufficient noisy web labels is able to achieve a better accuracy to supervised learning methods trained on the clean manually labeled data.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Learning video concept detectors automatically from the big but noisy web data with no additional manual annotations is a novel but challenging area in the multimedia and the machine learning community. A considerable amount of videos on the web is associated with rich but noisy contextual information, such as the title and other multi-modal information, which provides weak annotations or labels about the video content. To tackle the problem of large-scale noisy learning, We propose a novel method called Multi-modal WEbly-Labeled Learning (WELL-MM), which is established on the state-of-the-art machine learning algorithm inspired by the learning process of human. WELL-MM introduces a novel multi-modal approach to incorporate meaningful prior knowledge called curriculum from the noisy web videos. We empirically study the curriculum constructed from the multi-modal features of the Internet videos and images. The comprehensive experimental results on FCVID and YFCC100M demonstrate that WELL-MM outperforms state-of-the-art studies by a statically significant margin on learning concepts from noisy web video data. In addition, the results also verify that WELL-MM is robust to the level of noisiness in the video data. Notably, WELL-MM trained on sufficient noisy web labels is able to achieve a better accuracy to supervised learning methods trained on the clean manually labeled data.