Kernel subspace LDA with convolution kernel function for face recognition

Wensheng Chen, P. Yuen, Zhen Ji
{"title":"Kernel subspace LDA with convolution kernel function for face recognition","authors":"Wensheng Chen, P. Yuen, Zhen Ji","doi":"10.1109/ICWAPR.2010.5576309","DOIUrl":null,"url":null,"abstract":"It is well-known that most wavelet functions are un-symmetrical and thus fail to satisfy Fourier criterion. These kinds of wavelets cannot be utilized to construct Mercer kernel directly. Based on convolution technique, this paper proposes a novel framework on Mercer kernel construction. The proposed methodology indicates that any of wavelets can generate a wavelet-like kernel basis function, which has zero vanishing moment. An example on convolution Mercer kernel construction is given by using Haar wavelet. The self-constructed Haar wavelet convolution kernel (HWCK) function is then applied to kernel subspace linear discriminant analysis (SLDA) approach for face classification. The CMU PIE human face dataset is selected for evaluation. Comparing with the RBF kernel based SLDA method and existing LDA-based kernel methods such as KDDA and GDA, the proposed Haar wavelet convolution kernel based method gives superior results.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It is well-known that most wavelet functions are un-symmetrical and thus fail to satisfy Fourier criterion. These kinds of wavelets cannot be utilized to construct Mercer kernel directly. Based on convolution technique, this paper proposes a novel framework on Mercer kernel construction. The proposed methodology indicates that any of wavelets can generate a wavelet-like kernel basis function, which has zero vanishing moment. An example on convolution Mercer kernel construction is given by using Haar wavelet. The self-constructed Haar wavelet convolution kernel (HWCK) function is then applied to kernel subspace linear discriminant analysis (SLDA) approach for face classification. The CMU PIE human face dataset is selected for evaluation. Comparing with the RBF kernel based SLDA method and existing LDA-based kernel methods such as KDDA and GDA, the proposed Haar wavelet convolution kernel based method gives superior results.
基于卷积核函数的核子空间LDA人脸识别
众所周知,大多数小波函数是不对称的,因此不能满足傅里叶判据。这类小波不能直接用于构造默瑟核。基于卷积技术,提出了一种新的Mercer核构造框架。该方法表明,任何一个小波都可以生成一个具有零消失矩的类小波核基函数。给出了一个利用Haar小波构造卷积Mercer核的例子。然后将自构造Haar小波卷积核函数(HWCK)应用于核子空间线性判别分析(SLDA)人脸分类方法。选择CMU PIE人脸数据集进行评估。与基于RBF核的SLDA方法以及现有的基于lda的KDDA、GDA等核方法进行比较,提出的Haar小波卷积核方法具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信