A multi-feature fusion probabilistic topic model for unsupervised 3D point cloud classification

Jun Chen, Fan Xu, Zhigao Shang, Shuning Shao
{"title":"A multi-feature fusion probabilistic topic model for unsupervised 3D point cloud classification","authors":"Jun Chen, Fan Xu, Zhigao Shang, Shuning Shao","doi":"10.1117/12.2653513","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-feature fusion probabilistic topic model, called MFF-PTM, is proposed to realize unsupervised 3D point cloud classification. Our MFF-PTM consists of three key stages: 1) a novel multi-feature descriptor is designed to characterize different 3D point clouds by the combination of statistical, morphological and histogram features; 2) a Rsphere clustering algorithm is proposed to construct 3D visual vocabulary and generate the co-occurrence matrix, which can effectively avoid the initialization problem of category; 3) PTM employs the co-occurrence matrix to predict the probability distribution of a certain point cloud belonging to different category topics. The experimental results have clearly shown that the proposed MFF-PTM model can outperform the traditional PTM models with single feature description for 3D point cloud classification.","PeriodicalId":253792,"journal":{"name":"Conference on Optics and Communication Technology","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Optics and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2653513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a multi-feature fusion probabilistic topic model, called MFF-PTM, is proposed to realize unsupervised 3D point cloud classification. Our MFF-PTM consists of three key stages: 1) a novel multi-feature descriptor is designed to characterize different 3D point clouds by the combination of statistical, morphological and histogram features; 2) a Rsphere clustering algorithm is proposed to construct 3D visual vocabulary and generate the co-occurrence matrix, which can effectively avoid the initialization problem of category; 3) PTM employs the co-occurrence matrix to predict the probability distribution of a certain point cloud belonging to different category topics. The experimental results have clearly shown that the proposed MFF-PTM model can outperform the traditional PTM models with single feature description for 3D point cloud classification.
无监督三维点云分类的多特征融合概率主题模型
本文提出了一种多特征融合概率主题模型MFF-PTM,用于实现无监督三维点云分类。我们的MFF-PTM包括三个关键阶段:1)设计了一种新的多特征描述符,通过统计、形态和直方图特征的组合来表征不同的3D点云;2)提出了一种Rsphere聚类算法,构建三维视觉词汇表并生成共现矩阵,有效避免了类别的初始化问题;3) PTM利用共现矩阵预测某点云属于不同类别主题的概率分布。实验结果清楚地表明,所提出的MFF-PTM模型在三维点云分类方面优于传统的单一特征描述的PTM模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信