Face recognition using entropy-augmented face isolation and image folding as pre-processing techniques

K. N. Nischal, M. P. Nayak, K. Manikantan, S. Ramachandran
{"title":"Face recognition using entropy-augmented face isolation and image folding as pre-processing techniques","authors":"K. N. Nischal, M. P. Nayak, K. Manikantan, S. Ramachandran","doi":"10.1109/INDCON.2013.6725928","DOIUrl":null,"url":null,"abstract":"The appearance of the face varies drastically when background, pose and illumination change. Variations in these conditions make Face Recognition (FR) an even more challenging and difficult task. In this paper, we propose two novel preprocessing techniques, viz., Entropy Augmented Face Isolation (EAFI) and Image Folding, to improve the performance of the FR system. EAFI is used to localize the face region to minimize the effect of cluttered background, thereby enhancing face recognition. Image Folding uses the property of vertical symmetry in the human face to normalize pose variance. The resulting pre-processed image contains the salient details of the face and prepares the ground for feature extraction. Individual stages of the FR system are examined and an attempt is made to improve each stage. DWT and DCT are used for efficient feature extraction and a Binary Particle Swarm Optimization (BPSO) based feature selection algorithm is used to search the feature space for the optimal feature subset. Experimental results show the promising performance of the proposed techniques for face recognition on three benchmark face databases, namely, Color FERET, CMUPIE and Georgia Tech (GT) databases.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"7 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6725928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The appearance of the face varies drastically when background, pose and illumination change. Variations in these conditions make Face Recognition (FR) an even more challenging and difficult task. In this paper, we propose two novel preprocessing techniques, viz., Entropy Augmented Face Isolation (EAFI) and Image Folding, to improve the performance of the FR system. EAFI is used to localize the face region to minimize the effect of cluttered background, thereby enhancing face recognition. Image Folding uses the property of vertical symmetry in the human face to normalize pose variance. The resulting pre-processed image contains the salient details of the face and prepares the ground for feature extraction. Individual stages of the FR system are examined and an attempt is made to improve each stage. DWT and DCT are used for efficient feature extraction and a Binary Particle Swarm Optimization (BPSO) based feature selection algorithm is used to search the feature space for the optimal feature subset. Experimental results show the promising performance of the proposed techniques for face recognition on three benchmark face databases, namely, Color FERET, CMUPIE and Georgia Tech (GT) databases.
以熵增强人脸隔离和图像折叠为预处理技术的人脸识别
当背景、姿势和光照发生变化时,脸部的外观会发生巨大变化。这些条件的变化使人脸识别(FR)成为一项更具挑战性和难度的任务。在本文中,我们提出了两种新的预处理技术,即熵增强人脸隔离(EAFI)和图像折叠,以提高人脸识别系统的性能。利用EAFI对人脸区域进行定位,使背景杂乱的影响最小化,从而增强人脸识别能力。图像折叠利用人脸垂直对称的特性对姿态方差进行归一化。得到的预处理图像包含了人脸的显著细节,为特征提取做好了准备。研究了FR系统的各个阶段,并尝试对每个阶段进行改进。利用DWT和DCT进行有效的特征提取,利用基于二进制粒子群优化(BPSO)的特征选择算法在特征空间中搜索最优特征子集。实验结果表明,该方法在Color FERET、cmpie和Georgia Tech (GT)三个基准人脸数据库上取得了良好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信