On Optimal Joint Reflective and Refractive Dividend Strategies in Spectrally Positive Lévy Processes

Benjamin Avanzi, José-Luis Pérez, Bernard Wong, K. Yamazaki
{"title":"On Optimal Joint Reflective and Refractive Dividend Strategies in Spectrally Positive Lévy Processes","authors":"Benjamin Avanzi, José-Luis Pérez, Bernard Wong, K. Yamazaki","doi":"10.2139/ssrn.2805454","DOIUrl":null,"url":null,"abstract":"The expected present value of dividends is one of the classical stability criteria in actuarial risk theory. In this context, numerous papers considered threshold (refractive) and barrier (reflective) dividend strategies. These were shown to be optimal in a number of different contexts for bounded and unbounded payout rates, respectively. In this paper, motivated by the behaviour of some dividend paying stock exchange companies, we determine the optimal dividend strategy when both continuous (refractive) and lump sum (reflective) dividends can be paid at any time, and if they are subject to different transaction rates. We consider the general family of spectrally positive L\\'evy processes. Using scale functions, we obtain explicit formulas for the expected present value of dividends until ruin, with a penalty at ruin. We develop a verification lemma, and show that a two-layer (a,b) strategy is optimal. Such a strategy pays continuous dividends when the surplus exceeds level a>0, and all of the excess over b>a as lump sum dividend payments. Results are illustrated.","PeriodicalId":120143,"journal":{"name":"UNSW: Actuarial Studies (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNSW: Actuarial Studies (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2805454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The expected present value of dividends is one of the classical stability criteria in actuarial risk theory. In this context, numerous papers considered threshold (refractive) and barrier (reflective) dividend strategies. These were shown to be optimal in a number of different contexts for bounded and unbounded payout rates, respectively. In this paper, motivated by the behaviour of some dividend paying stock exchange companies, we determine the optimal dividend strategy when both continuous (refractive) and lump sum (reflective) dividends can be paid at any time, and if they are subject to different transaction rates. We consider the general family of spectrally positive L\'evy processes. Using scale functions, we obtain explicit formulas for the expected present value of dividends until ruin, with a penalty at ruin. We develop a verification lemma, and show that a two-layer (a,b) strategy is optimal. Such a strategy pays continuous dividends when the surplus exceeds level a>0, and all of the excess over b>a as lump sum dividend payments. Results are illustrated.
光谱正lsamvy过程的最优联合反射和折射红利策略
股利预期现值是精算风险理论中经典的稳定性准则之一。在此背景下,许多论文考虑了阈值(折射)和屏障(反射)股息策略。这些分别在有界和无界支付率的许多不同情况下被证明是最优的。本文以一些股票交易公司的股息支付行为为激励,确定了当连续(折射)和一次性(反射)股息都可以随时支付时,以及它们受不同交易率约束时的最优股息策略。我们考虑谱正L′evy过程的一般族。利用尺度函数,我们得到了破产前股息预期现值的显式公式,并给出了破产时的惩罚。我们开发了一个验证引理,并证明了两层(a,b)策略是最优的。当盈余超过水平a>0时,该策略支付连续股息,所有超过水平b>a的部分作为一次性股息支付。结果说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信