{"title":"Nanohole design for high performance polymer solar cell","authors":"Doha. M. A. Rahman, M. Hameed, S. Obayya","doi":"10.1109/NUSOD.2014.6935354","DOIUrl":null,"url":null,"abstract":"A novel design of nanohole polymer solar cell (NHPSC) is reported for light trapping improvement. The proposed design has shown a considerable enhancement in the optical and electrical parameters of the polymer solar cell based on a conventional blend of poly-3-hexylthiophene/ [6, 6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as an active material. In this study, 3D finite difference time domain method is used to simulate the light absorption in the nanohole structure. In addition, an electrical model is developed to calculate the electrical parameters of the polymer solar cell. The reported design has shown 28% improvement in short circuit current density and overall efficiency alike.","PeriodicalId":114800,"journal":{"name":"Numerical Simulation of Optoelectronic Devices, 2014","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Simulation of Optoelectronic Devices, 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2014.6935354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel design of nanohole polymer solar cell (NHPSC) is reported for light trapping improvement. The proposed design has shown a considerable enhancement in the optical and electrical parameters of the polymer solar cell based on a conventional blend of poly-3-hexylthiophene/ [6, 6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as an active material. In this study, 3D finite difference time domain method is used to simulate the light absorption in the nanohole structure. In addition, an electrical model is developed to calculate the electrical parameters of the polymer solar cell. The reported design has shown 28% improvement in short circuit current density and overall efficiency alike.