Detection of absence epileptic seizures using support vector machine

C. F. Reyes, T. J. Contreras, B. Tovar-Corona, L. Garay, M. A. Silva
{"title":"Detection of absence epileptic seizures using support vector machine","authors":"C. F. Reyes, T. J. Contreras, B. Tovar-Corona, L. Garay, M. A. Silva","doi":"10.1109/ICEEE.2013.6676057","DOIUrl":null,"url":null,"abstract":"An application of support vector machine is presented as a tool for events detection in the electroencephalogram recorded from a patient clinically diagnosed with absence epilepsy. A comparison of five kernels is shown (linear, quadratic, polynomial, RBP and MLP) evaluating their efficiency for the detection of this epileptic event occurrence. The kernel with the best performance is the quadratic, with 99.43% accuracy in this specific case.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An application of support vector machine is presented as a tool for events detection in the electroencephalogram recorded from a patient clinically diagnosed with absence epilepsy. A comparison of five kernels is shown (linear, quadratic, polynomial, RBP and MLP) evaluating their efficiency for the detection of this epileptic event occurrence. The kernel with the best performance is the quadratic, with 99.43% accuracy in this specific case.
支持向量机检测失神性癫痫发作
应用支持向量机作为一种工具,在脑电图记录的事件检测从临床诊断为缺席癫痫患者。比较了五种核(线性、二次、多项式、RBP和MLP)对这种癫痫事件发生的检测效率。性能最好的核是二次核,在这种特定情况下准确率为99.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信