Muhannad Altimemy, Bashar Attiya, Cosan Daskiran, I-Han Liu, A. Oztekin
{"title":"Stabilizing Pump-Turbine Operations Using Water Injection Passive Control","authors":"Muhannad Altimemy, Bashar Attiya, Cosan Daskiran, I-Han Liu, A. Oztekin","doi":"10.1115/ajkfluids2019-4866","DOIUrl":null,"url":null,"abstract":"\n Computational fluid dynamics simulations are carried out to characterize the spatial and temporal characteristics of the velocity and pressure field of turbulent flows through a pumpturbine unit operating with the turbine mode. The high-fidelity large eddy simulations turbulence model is utilized to examine the flow-induced vibrations in the draft tube of the unit. The water injection from the runner cone is considered as the control strategy to mitigate the flow-induced fluctuations. The simulations are conducted for the turbine flow rate of 0.2 m3/s without and with the water injection at a rate of 0.008 m3/s. The pressure along the surface of the draft tube is probed at various locations to access the effectiveness of the water injection to mitigate fluctuations. Water injection at 4% rate is demonstrated to be effective in attenuating the pressure fluctuation inside the draft tube. The amplitude of fluctuations is reduced by nearly 50% by the water injection. The generated power is hardly influenced by water injection. Thus, the control strategy considered here could be employed effectively without a penalty on the power generation.","PeriodicalId":270000,"journal":{"name":"Volume 3B: Fluid Applications and Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Fluid Applications and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computational fluid dynamics simulations are carried out to characterize the spatial and temporal characteristics of the velocity and pressure field of turbulent flows through a pumpturbine unit operating with the turbine mode. The high-fidelity large eddy simulations turbulence model is utilized to examine the flow-induced vibrations in the draft tube of the unit. The water injection from the runner cone is considered as the control strategy to mitigate the flow-induced fluctuations. The simulations are conducted for the turbine flow rate of 0.2 m3/s without and with the water injection at a rate of 0.008 m3/s. The pressure along the surface of the draft tube is probed at various locations to access the effectiveness of the water injection to mitigate fluctuations. Water injection at 4% rate is demonstrated to be effective in attenuating the pressure fluctuation inside the draft tube. The amplitude of fluctuations is reduced by nearly 50% by the water injection. The generated power is hardly influenced by water injection. Thus, the control strategy considered here could be employed effectively without a penalty on the power generation.