Super toda lattices

E. Lende, H. Pijls
{"title":"Super toda lattices","authors":"E. Lende, H. Pijls","doi":"10.1063/1.530586","DOIUrl":null,"url":null,"abstract":"The Lax formalism, as described by Oevel et al. and in an earlier and more fundamental form by Semenov, Kostant, Symes, and Adler, can easily be generalized to the case where anticommuting variables are involved, the so‐called supercase. In this article this super‐Lax formalism is applied to the well‐known associative superalgebra G=Mat(m,n,Λ). Subspaces of G to which the super‐Poisson structures can be restricted arise in a natural way. Taking L in one of these subspaces formally leads to superextensions of the hierarchy of nonrelativistic Toda lattices. In the simplest case, where only nearest‐neighbor interaction is involved, the equations are explicitly solved. Furthermore, the relevant two super‐Hamiltonian structures are explicitly calculated. Finally a superextension of the relativistic Toda lattice with a super‐Hamiltonian structure is described herein.","PeriodicalId":229215,"journal":{"name":"Acta Applicandae Mathematica","volume":"15 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.530586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Lax formalism, as described by Oevel et al. and in an earlier and more fundamental form by Semenov, Kostant, Symes, and Adler, can easily be generalized to the case where anticommuting variables are involved, the so‐called supercase. In this article this super‐Lax formalism is applied to the well‐known associative superalgebra G=Mat(m,n,Λ). Subspaces of G to which the super‐Poisson structures can be restricted arise in a natural way. Taking L in one of these subspaces formally leads to superextensions of the hierarchy of nonrelativistic Toda lattices. In the simplest case, where only nearest‐neighbor interaction is involved, the equations are explicitly solved. Furthermore, the relevant two super‐Hamiltonian structures are explicitly calculated. Finally a superextension of the relativistic Toda lattice with a super‐Hamiltonian structure is described herein.
超级今天格
Oevel等人所描述的Lax形式,以及Semenov、Kostant、Symes和Adler更早、更基本的形式,可以很容易地推广到涉及反交换变量的情况,即所谓的超情况。在本文中,我们将这个超Lax的形式应用于著名的结合超代数G=Mat(m,n,Λ)。G的超泊松结构可以被限制到的子空间自然产生。在这些子空间中取L,可以得到非相对论Toda格的超扩展。在最简单的情况下,只涉及最近邻相互作用,方程显式求解。此外,还明确地计算了相关的两个超哈密顿结构。最后给出了具有超哈密顿结构的相对论Toda格的一个超扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信