{"title":"Modeling Transcriptional Regulation in Chondrogenesis Using Particle Swarm Optimization","authors":"Yunlong Liu, H. Yokota","doi":"10.1109/CIBCB.2005.1594934","DOIUrl":null,"url":null,"abstract":"Chondrogenesis is a complex developmental process involving many transcription factors. Using mRNA expression data and regulatory DNA sequences, we formulated a quantitative model to predict a set of transcription-factor binding motifs (TFBMs) as a combinatorial problem. To solve such a problem, an efficient computational algorithm should be employed. In the current study, particle swarm optimization was applied. Swarm intelligence is an artificial intelligence approach that mimics a behavior of swarm-forming agents. Such systems are made up with a population of individuals that interact locally and globally. Here, a group of TFBMs was predicted using 200 artificial bees and the results were compared to biologically known binding motifs.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Chondrogenesis is a complex developmental process involving many transcription factors. Using mRNA expression data and regulatory DNA sequences, we formulated a quantitative model to predict a set of transcription-factor binding motifs (TFBMs) as a combinatorial problem. To solve such a problem, an efficient computational algorithm should be employed. In the current study, particle swarm optimization was applied. Swarm intelligence is an artificial intelligence approach that mimics a behavior of swarm-forming agents. Such systems are made up with a population of individuals that interact locally and globally. Here, a group of TFBMs was predicted using 200 artificial bees and the results were compared to biologically known binding motifs.