Explosive Blast Prediction using MLP Network based Training Algorithm

M. H. Mat, P. Nagappan, Syahrull Hi-Fi Syam Ahmad Jamil, F.R. Hashim, Khairol Amali Bin Ahmad, Kamsani Kamal
{"title":"Explosive Blast Prediction using MLP Network based Training Algorithm","authors":"M. H. Mat, P. Nagappan, Syahrull Hi-Fi Syam Ahmad Jamil, F.R. Hashim, Khairol Amali Bin Ahmad, Kamsani Kamal","doi":"10.1109/ICCSCE58721.2023.10237166","DOIUrl":null,"url":null,"abstract":"The blast wave profile produced by detonations has long been the subject of research. The propagation profile of blast waves can be predicted given certain parameters after significant experimentation. However, prior research has mostly concentrated on the center of initiation for spherical explosive forms. This study compares the accuracy of blast peak overpressure predictions according to the kind, shape, and location of the explosive detonation. The experiment required creating a prediction model using a Multilayer Perceptron (MLP) network and detonating 500 grammes of Plastic Explosive 4 (PE-4) and Emulex at various ranges (from 0.5 m to 4.0 m) to do this. When modelling the prediction of explosive blasts using Tansig and Logsig training algorithms, Lavenberg Marquardt (LM) training method outperforms Backpropagation (BP). The MSE and regression scores of 1.1348 and 0.9512, respectively, using the LM training algorithm show the best performance.","PeriodicalId":287947,"journal":{"name":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE58721.2023.10237166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The blast wave profile produced by detonations has long been the subject of research. The propagation profile of blast waves can be predicted given certain parameters after significant experimentation. However, prior research has mostly concentrated on the center of initiation for spherical explosive forms. This study compares the accuracy of blast peak overpressure predictions according to the kind, shape, and location of the explosive detonation. The experiment required creating a prediction model using a Multilayer Perceptron (MLP) network and detonating 500 grammes of Plastic Explosive 4 (PE-4) and Emulex at various ranges (from 0.5 m to 4.0 m) to do this. When modelling the prediction of explosive blasts using Tansig and Logsig training algorithms, Lavenberg Marquardt (LM) training method outperforms Backpropagation (BP). The MSE and regression scores of 1.1348 and 0.9512, respectively, using the LM training algorithm show the best performance.
基于MLP网络的爆炸预测训练算法
爆炸产生的冲击波剖面图一直是人们研究的课题。在一定的参数条件下,经过大量的实验,可以预测爆炸冲击波的传播剖面。然而,以往的研究大多集中在球形炸药的起爆中心。根据爆轰的种类、形状和位置,比较了爆轰峰值超压预测的准确性。该实验需要使用多层感知器(MLP)网络创建一个预测模型,并在不同范围(从0.5米到4.0米)引爆500克塑料炸药4 (PE-4)和Emulex。在使用Tansig和Logsig训练算法对爆炸预测建模时,Lavenberg Marquardt (LM)训练方法优于反向传播(BP)方法。使用LM训练算法的MSE和回归分数分别为1.1348和0.9512,表现出最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信