Kotaro Aoyama, Yuto Nakashima, I. Tomohiro, Shunsuke Inenaga, H. Bannai, M. Takeda
{"title":"Faster Online Elastic Degenerate String Matching","authors":"Kotaro Aoyama, Yuto Nakashima, I. Tomohiro, Shunsuke Inenaga, H. Bannai, M. Takeda","doi":"10.4230/LIPIcs.CPM.2018.9","DOIUrl":null,"url":null,"abstract":"An Elastic-Degenerate String [Iliopoulus et al., LATA 2017] is a sequence of sets of strings, which was recently proposed as a way to model a set of similar sequences. We give an online algorithm for the Elastic-Degenerate String Matching (EDSM) problem that runs in O(nm sqrt{m log m} + N) time and O(m) working space, where n is the number of elastic degenerate segments of the text, N is the total length of all strings in the text, and m is the length of the pattern. This improves the previous algorithm by Grossi et al. [CPM 2017] that runs in O(nm^2 + N) time.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2018.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
An Elastic-Degenerate String [Iliopoulus et al., LATA 2017] is a sequence of sets of strings, which was recently proposed as a way to model a set of similar sequences. We give an online algorithm for the Elastic-Degenerate String Matching (EDSM) problem that runs in O(nm sqrt{m log m} + N) time and O(m) working space, where n is the number of elastic degenerate segments of the text, N is the total length of all strings in the text, and m is the length of the pattern. This improves the previous algorithm by Grossi et al. [CPM 2017] that runs in O(nm^2 + N) time.