Uncovering Actionable Knowledge in Corporate Data with Qualified Association Rules

N. Jukic, Svetlozar Nestorov, Miguel Velasco, J. Eddington
{"title":"Uncovering Actionable Knowledge in Corporate Data with Qualified Association Rules","authors":"N. Jukic, Svetlozar Nestorov, Miguel Velasco, J. Eddington","doi":"10.4018/jbir.2011040101","DOIUrl":null,"url":null,"abstract":"Association rules mining is one of the most successfully applied data mining methods in today’s business settings (e.g. Amazon or Netflix recommendations to customers). Qualified association rules mining is an extension of the association rules data mining method, that uncovers previously unknown correlations that only manifest themselves under certain circumstances (e.g. on a particular day of the week), with the goal of improving action results, e.g. turning an underperforming campaign (spread too thin over the entire audience) into a highly targeted campaign that delivers results. Such correlations have not been easily reachable using standard data mining tools so far. This paper describes the method for straightforward discovery of qualified association rules and demonstrates the use of qualified association rules mining on an actual corporate data set. The data set is a subset of a corporate data warehouse for Sam’s Club, a division of Wal-Mart Stores, INC. The experiments described in this paper illustrate how qualified association rules supplement standard association rules data mining methods and provide additional information which can be used to better target corporate actions.","PeriodicalId":404696,"journal":{"name":"Int. J. Bus. Intell. Res.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bus. Intell. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jbir.2011040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Association rules mining is one of the most successfully applied data mining methods in today’s business settings (e.g. Amazon or Netflix recommendations to customers). Qualified association rules mining is an extension of the association rules data mining method, that uncovers previously unknown correlations that only manifest themselves under certain circumstances (e.g. on a particular day of the week), with the goal of improving action results, e.g. turning an underperforming campaign (spread too thin over the entire audience) into a highly targeted campaign that delivers results. Such correlations have not been easily reachable using standard data mining tools so far. This paper describes the method for straightforward discovery of qualified association rules and demonstrates the use of qualified association rules mining on an actual corporate data set. The data set is a subset of a corporate data warehouse for Sam’s Club, a division of Wal-Mart Stores, INC. The experiments described in this paper illustrate how qualified association rules supplement standard association rules data mining methods and provide additional information which can be used to better target corporate actions.
利用合格的关联规则发现企业数据中的可操作知识
关联规则挖掘是当今商业环境(例如亚马逊或Netflix向客户推荐)中最成功的数据挖掘方法之一。合格关联规则挖掘是关联规则数据挖掘方法的扩展,它揭示了以前未知的相关性,这些相关性仅在某些情况下(例如,在一周中的特定一天)才会显现出来,其目标是改善行动结果,例如,将表现不佳的活动(在整个受众中分布得太薄)转变为具有高度针对性的活动,从而交付结果。到目前为止,使用标准数据挖掘工具还不容易获得这种相关性。本文描述了直接发现合格关联规则的方法,并演示了在实际公司数据集上使用合格关联规则挖掘的方法。该数据集是sam俱乐部(Wal-Mart Stores, INC.的一个部门)的公司数据仓库的子集。本文中描述的实验说明了合格的关联规则如何补充标准关联规则数据挖掘方法,并提供可用于更好地针对企业行为的附加信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信