A statistical perspective on state-space modeling using subspace methods

M. Viberg, B. Ottersten, B. Wahlberg, L. Ljung
{"title":"A statistical perspective on state-space modeling using subspace methods","authors":"M. Viberg, B. Ottersten, B. Wahlberg, L. Ljung","doi":"10.1109/CDC.1991.261612","DOIUrl":null,"url":null,"abstract":"The authors investigate aspects of subspace-based state-space identification techniques from a statistical perspective. They concentrate their efforts on a simple approach which is based on finding the range-space of the observability matrix of a state-space representation. The system description is then found using the shift-invariance property of the observability matrix. It is shown that this results in a consistent system description for multivariable output-error models if the measurement noise is white in time and independent from output to output. The asymptotic covariance of the estimated poles of the system is also derived. In the test case studied, the subspace technique performs comparably with the statistically efficient PE (prediction error) method, whereas the instrumental variable method does notably worse. Hence, the subspace technique may be a strong candidate for determining initial values for the optimization in the efficient PE method.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

The authors investigate aspects of subspace-based state-space identification techniques from a statistical perspective. They concentrate their efforts on a simple approach which is based on finding the range-space of the observability matrix of a state-space representation. The system description is then found using the shift-invariance property of the observability matrix. It is shown that this results in a consistent system description for multivariable output-error models if the measurement noise is white in time and independent from output to output. The asymptotic covariance of the estimated poles of the system is also derived. In the test case studied, the subspace technique performs comparably with the statistically efficient PE (prediction error) method, whereas the instrumental variable method does notably worse. Hence, the subspace technique may be a strong candidate for determining initial values for the optimization in the efficient PE method.<>
使用子空间方法的状态空间建模的统计观点
作者从统计的角度研究了基于子空间的状态空间识别技术。他们将精力集中在一种简单的方法上,该方法基于寻找状态空间表示的可观察性矩阵的范围空间。然后利用可观测矩阵的平移不变性找到系统描述。结果表明,如果测量噪声在时间上是白的,并且在输出到输出之间是独立的,那么这将导致多变量输出误差模型的一致系统描述。导出了系统估计极点的渐近协方差。在研究的测试用例中,子空间技术的性能与统计上有效的PE(预测误差)方法相当,而工具变量方法的性能明显更差。因此,子空间技术可能是确定高效PE方法中优化的初始值的有力候选
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信