Right of Way Rules based Collision Avoidance Approach Using Model Predictive Control

Yogesh Kumar, Amith Manoharan, P. Sujit
{"title":"Right of Way Rules based Collision Avoidance Approach Using Model Predictive Control","authors":"Yogesh Kumar, Amith Manoharan, P. Sujit","doi":"10.1109/ICC47138.2019.9123203","DOIUrl":null,"url":null,"abstract":"This paper presents a Model Predictive Control (MPC) based collision avoidance scheme for unmanned aerial vehicles (UAVs) in civilian airspace consisting of manned and unmanned aerial vehicles. The MPC formulation takes the Federal Aviation Regulations for collision avoidance mid-air collision scenarios into account. The optimal control inputs to the UAV in the form of angular velocities are computed by optimizing the MPC cost function for a finite prediction horizon. The algorithm is evaluated for pairwise and multi-UAV conflict scenarios and compared against inverse proportional navigation (IPN) collision avoidance approach. The results show that MPC has lower control effort than the IPN while achieving similar performance of IPN.","PeriodicalId":231050,"journal":{"name":"2019 Sixth Indian Control Conference (ICC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sixth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC47138.2019.9123203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a Model Predictive Control (MPC) based collision avoidance scheme for unmanned aerial vehicles (UAVs) in civilian airspace consisting of manned and unmanned aerial vehicles. The MPC formulation takes the Federal Aviation Regulations for collision avoidance mid-air collision scenarios into account. The optimal control inputs to the UAV in the form of angular velocities are computed by optimizing the MPC cost function for a finite prediction horizon. The algorithm is evaluated for pairwise and multi-UAV conflict scenarios and compared against inverse proportional navigation (IPN) collision avoidance approach. The results show that MPC has lower control effort than the IPN while achieving similar performance of IPN.
基于路权规则的模型预测控制避碰方法
提出了一种基于模型预测控制(MPC)的民用空域无人飞行器避碰方案,该方案由有人驾驶飞行器和无人驾驶飞行器组成。MPC的制定将联邦航空条例中避免空中碰撞的情况考虑在内。在有限预测范围内,通过优化MPC代价函数,以角速度形式计算无人机的最优控制输入。对该算法在两两和多无人机冲突场景下进行了评估,并与反比例导航(IPN)避碰方法进行了比较。结果表明,MPC在获得与IPN相似的性能的同时,其控制工作量低于IPN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信