Comparison of EM algorithm and particle swarm optimisation for local model network training

C. Hametner, S. Jakubek
{"title":"Comparison of EM algorithm and particle swarm optimisation for local model network training","authors":"C. Hametner, S. Jakubek","doi":"10.1109/ICCIS.2010.5518547","DOIUrl":null,"url":null,"abstract":"Local model networks (LMNs) offer a versatile structure for the identification of nonlinear static and dynamic systems. In this paper an algorithm for the construction of a tree-structured LMN with axis-oblique partitioning using particle swarm optimisation (PSO) is presented. The PSO algorithm allows the optimisation of arbitrary performance criteria but is only used for a certain subtask which helps to reduce the search space for the evolutionary algorithm very effectively. A comparison using an Expectation-Maximisation (EM) algorithm is presented. The differences and advantages of the LMN with PSO and the EM algorithm, respectively, are highlighted by means of an illustrative example. The practical applicability of the proposed LMN with particle swarm optimisation is demonstrated using real measurement data of an internal combustion engine.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Local model networks (LMNs) offer a versatile structure for the identification of nonlinear static and dynamic systems. In this paper an algorithm for the construction of a tree-structured LMN with axis-oblique partitioning using particle swarm optimisation (PSO) is presented. The PSO algorithm allows the optimisation of arbitrary performance criteria but is only used for a certain subtask which helps to reduce the search space for the evolutionary algorithm very effectively. A comparison using an Expectation-Maximisation (EM) algorithm is presented. The differences and advantages of the LMN with PSO and the EM algorithm, respectively, are highlighted by means of an illustrative example. The practical applicability of the proposed LMN with particle swarm optimisation is demonstrated using real measurement data of an internal combustion engine.
局部模型网络训练中EM算法与粒子群算法的比较
局部模型网络(LMNs)为非线性静态和动态系统的辨识提供了一种通用的结构。本文提出了一种利用粒子群优化(PSO)构造具有轴-斜划分的树结构LMN的算法。粒子群算法允许任意性能标准的优化,但只用于特定的子任务,这有助于有效地减少进化算法的搜索空间。利用期望最大化(EM)算法进行了比较。通过一个算例,突出了基于粒子群算法的LMN和基于EM算法的LMN的区别和优点。通过内燃机实测数据验证了粒子群优化LMN的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信