Optimal bounds for decision problems on the CRCW PRAM

P. Beame, J. Håstad
{"title":"Optimal bounds for decision problems on the CRCW PRAM","authors":"P. Beame, J. Håstad","doi":"10.1145/28395.28405","DOIUrl":null,"url":null,"abstract":"We prove optimal &OHgr;(log n/log log n) lower bounds on the time for CRCW PRAM's with polynomially bounded numbers of processors or memory cells to compute parity and a number of related problems. We also exhibit a strict time hierarchy of explicit Boolean functions of n bits on such machines which holds up to &Ogr;(log n/log log n) time. Furthermore, we show that almost all Boolean functions of n bits require log n - log log n + &OHgr;(1) time when the number of processors is at most polynomial in n. Our bounds do not place restrictions on the uniformity of the algorithms nor on the instruction sets of the machines.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178

Abstract

We prove optimal &OHgr;(log n/log log n) lower bounds on the time for CRCW PRAM's with polynomially bounded numbers of processors or memory cells to compute parity and a number of related problems. We also exhibit a strict time hierarchy of explicit Boolean functions of n bits on such machines which holds up to &Ogr;(log n/log log n) time. Furthermore, we show that almost all Boolean functions of n bits require log n - log log n + &OHgr;(1) time when the number of processors is at most polynomial in n. Our bounds do not place restrictions on the uniformity of the algorithms nor on the instruction sets of the machines.
CRCW PRAM上决策问题的最优界
我们证明了具有多项式有界处理器或存储单元数的CRCW PRAM计算奇偶校验和许多相关问题的时间的最优&OHgr;(log n/log log n)下界。我们还展示了在这样的机器上n位显式布尔函数的严格时间层次结构,它保持了&Ogr;(log n/log log n)时间。此外,我们表明,当处理器数量最多为n的多项式时,几乎所有n位的布尔函数都需要log n - log log n + &OHgr;(1)时间。我们的界限不限制算法的一致性,也不限制机器的指令集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信