Passage Retrieval Using Graph Vertices Comparison

T. Dkaki, J. Mothe, Q. Truong
{"title":"Passage Retrieval Using Graph Vertices Comparison","authors":"T. Dkaki, J. Mothe, Q. Truong","doi":"10.1109/SITIS.2007.82","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an Information retrieval Model based on graph comparison. It is inspired from previous work such as KleinbergpsilaHits and Blondel et al.psilas model. Unlike previous methods, our model considers different types of nodes: text nodes (elements to retrieve and query) and term nodes, so that the resulting graph is a bipartite graph. The results on passage retrieval task show that high precision is improved using this model.","PeriodicalId":234433,"journal":{"name":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2007.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we describe an Information retrieval Model based on graph comparison. It is inspired from previous work such as KleinbergpsilaHits and Blondel et al.psilas model. Unlike previous methods, our model considers different types of nodes: text nodes (elements to retrieve and query) and term nodes, so that the resulting graph is a bipartite graph. The results on passage retrieval task show that high precision is improved using this model.
使用图顶点比较的通道检索
本文描述了一种基于图比较的信息检索模型。它的灵感来自先前的工作,如KleinbergpsilaHits和Blondel等人的psilas模型。与以前的方法不同,我们的模型考虑了不同类型的节点:文本节点(要检索和查询的元素)和术语节点,因此得到的图是一个二部图。实验结果表明,该模型提高了文本检索的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信