Differentiation in logical form

A. Edalat, Mehrdad Maleki
{"title":"Differentiation in logical form","authors":"A. Edalat, Mehrdad Maleki","doi":"10.1109/LICS.2017.8005143","DOIUrl":null,"url":null,"abstract":"We introduce a logical theory of differentiation for a real-valued function on a finite dimensional real Euclidean space. A real-valued continuous function is represented by a localic approximable mapping between two semi-strong proximity lattices, representing the two stably locally compact Euclidean spaces for the domain and the range of the function. Similarly, the Clarke subgradient, equivalently the L-derivative, of a locally Lipschitz map, which is non-empty, compact and convex valued, is represented by an approximable mapping. Approximable mappings of the latter type form a bounded complete domain isomorphic with the function space of Scott continuous functions of a real variable into the domain of non-empty compact and convex subsets of the finite dimensional Euclidean space partially ordered with reverse inclusion. Corresponding to the notion of a single-tie of a locally Lipschitz function, used to derive the domain-theoretic L-derivative of the function, we introduce the dual notion of a single-knot of approximable mappings which gives rise to Lipschitzian approximable mappings. We then develop the notion of a strong single-tie and that of a strong knot leading to a Stone duality result for locally Lipschitz maps and Lipschitzian approximable mappings. The strong single-knots, in which a Lipschitzian approximable mapping belongs, are employed to define the Lipschitzian derivative of the approximable mapping. The latter is dual to the Clarke subgradient of the corresponding locally Lipschitz map defined domain-theoretically using strong single-ties. A stricter notion of strong single-knots is subsequently developed which captures approximable mappings of continuously differentiable maps providing a gradient Stone duality for these maps. Finally, we derive a calculus for Lipschitzian derivative of approximable mapping for some basic constructors and show that it is dual to the calculus satisfied by the Clarke subgradient.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a logical theory of differentiation for a real-valued function on a finite dimensional real Euclidean space. A real-valued continuous function is represented by a localic approximable mapping between two semi-strong proximity lattices, representing the two stably locally compact Euclidean spaces for the domain and the range of the function. Similarly, the Clarke subgradient, equivalently the L-derivative, of a locally Lipschitz map, which is non-empty, compact and convex valued, is represented by an approximable mapping. Approximable mappings of the latter type form a bounded complete domain isomorphic with the function space of Scott continuous functions of a real variable into the domain of non-empty compact and convex subsets of the finite dimensional Euclidean space partially ordered with reverse inclusion. Corresponding to the notion of a single-tie of a locally Lipschitz function, used to derive the domain-theoretic L-derivative of the function, we introduce the dual notion of a single-knot of approximable mappings which gives rise to Lipschitzian approximable mappings. We then develop the notion of a strong single-tie and that of a strong knot leading to a Stone duality result for locally Lipschitz maps and Lipschitzian approximable mappings. The strong single-knots, in which a Lipschitzian approximable mapping belongs, are employed to define the Lipschitzian derivative of the approximable mapping. The latter is dual to the Clarke subgradient of the corresponding locally Lipschitz map defined domain-theoretically using strong single-ties. A stricter notion of strong single-knots is subsequently developed which captures approximable mappings of continuously differentiable maps providing a gradient Stone duality for these maps. Finally, we derive a calculus for Lipschitzian derivative of approximable mapping for some basic constructors and show that it is dual to the calculus satisfied by the Clarke subgradient.
逻辑形式的微分
介绍了有限维实欧几里德空间上实值函数的逻辑微分理论。用两个半强邻近格之间的局部近似映射来表示一个实值连续函数,表示函数的定义域和值域的两个稳定的局部紧化欧几里德空间。同样地,非空的、紧的、凸值的局部Lipschitz映射的Clarke次梯度,即l -导数,可以用一个近似映射来表示。后一种类型的近似映射与实变量的Scott连续函数的函数空间形成一个有界完全域同构到有限维欧氏空间的部分有序的非空紧凸子集域上。对应于局部Lipschitz函数的单结的概念,我们引入了近似映射的单结的对偶概念,从而得到了Lipschitz近似映射。然后,我们发展了强单结和强结的概念,导致局部Lipschitz映射和Lipschitz近似映射的Stone对偶结果。利用Lipschitzian近似映射所属的强单节来定义该近似映射的Lipschitzian导数。后者对偶于相应的局部Lipschitz映射定义域的Clarke子梯度-理论上使用强单系。随后提出了一个更严格的强单结概念,它捕获了连续可微映射的近似映射,为这些映射提供了梯度Stone对偶性。最后,我们导出了一些基本构造函数的近似映射的Lipschitzian导数的演算,并证明了它是由Clarke次梯度所满足的演算的对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信