Circuit Lower Bounds for MCSP from Local Pseudorandom Generators

Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, Dimitrios Myrisiotis
{"title":"Circuit Lower Bounds for MCSP from Local Pseudorandom Generators","authors":"Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, Dimitrios Myrisiotis","doi":"10.1145/3404860","DOIUrl":null,"url":null,"abstract":"The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function f can be computed by a Boolean circuit of size at most θ, for a given parameter θ. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a PRG is called local if its output bit strings, when viewed as the truth table of a Boolean function, can be computed by a Boolean circuit of small size. We get new and improved lower bounds for MCSP that almost match the best-known lower bounds against several circuit models. Specifically, we show that computing MCSP, on functions with a truth table of length N, requires • N3−o(1)-size de Morgan formulas, improving the recent N2−o(1) lower bound by Hirahara and Santhanam (CCC, 2017), • N2−o(1)-size formulas over an arbitrary basis or general branching programs (no non-trivial lower bound was known for MCSP against these models), and • 2Ω(N1/(d+1.01))-size depth-d AC0 circuits, improving the (implicit, in their work) exponential size lower bound by Allender et al. (SICOMP, 2006). The AC0 lower bound stated above matches the best-known AC0 lower bound (for PARITY) up to a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e., CNFs or DNFs), we get an optimal lower bound of 2Ω(N) for MCSP.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function f can be computed by a Boolean circuit of size at most θ, for a given parameter θ. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a PRG is called local if its output bit strings, when viewed as the truth table of a Boolean function, can be computed by a Boolean circuit of small size. We get new and improved lower bounds for MCSP that almost match the best-known lower bounds against several circuit models. Specifically, we show that computing MCSP, on functions with a truth table of length N, requires • N3−o(1)-size de Morgan formulas, improving the recent N2−o(1) lower bound by Hirahara and Santhanam (CCC, 2017), • N2−o(1)-size formulas over an arbitrary basis or general branching programs (no non-trivial lower bound was known for MCSP against these models), and • 2Ω(N1/(d+1.01))-size depth-d AC0 circuits, improving the (implicit, in their work) exponential size lower bound by Allender et al. (SICOMP, 2006). The AC0 lower bound stated above matches the best-known AC0 lower bound (for PARITY) up to a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e., CNFs or DNFs), we get an optimal lower bound of 2Ω(N) for MCSP.
基于局部伪随机发生器的MCSP电路下界
最小电路尺寸问题(MCSP)问的是,对于给定参数θ,布尔函数f的给定真值表是否可以由一个最大为θ的布尔电路来计算。我们使用局部伪随机发生器(prg)改进了MCSP的几个电路下界;如果一个PRG的输出位串作为布尔函数的真值表,可以用小尺寸的布尔电路计算,则称为局部PRG。我们得到了新的和改进的MCSP下界,几乎与几种电路模型中最著名的下界相匹配。具体来说,我们表明,在长度为N的真值表上计算MCSP,需要•N3−o(1)个大小的de Morgan公式,改进了Hirahara和Santhanam (CCC, 2017)最近的N2−o(1)个下界,•N2−o(1)个大小的公式在任意基或一般分支程序上(针对这些模型,MCSP没有非平凡下界已知),以及•2Ω(N1/(d+1.01))-大小的深度d AC0电路,改进了(隐式,Allender等人的指数大小下界(SICOMP, 2006)。上面所述的AC0下界与最著名的AC0下界(对于奇偶性)匹配,直到深度的一个小的附加常数。此外,对于深度2电路的特殊情况(即CNFs或DNFs),我们得到了MCSP的最优下界2Ω(N)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信