A Stream Clustering Algorithm for Classifying Network IDS Alerts

Risto Vaarandi
{"title":"A Stream Clustering Algorithm for Classifying Network IDS Alerts","authors":"Risto Vaarandi","doi":"10.1109/CSR51186.2021.9527926","DOIUrl":null,"url":null,"abstract":"Network IDS is a widely used security monitoring technology for detecting cyber attacks, malware activity, and other unwanted network traffic. Unfortunately, network IDSs are known to generate a large number of alerts which overwhelm the human analyst, with many alerts having low importance or being false positives. This paper addresses this issue and proposes a lightweight stream clustering algorithm for classifying IDS alerts and discovering frequent attack scenarios.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Network IDS is a widely used security monitoring technology for detecting cyber attacks, malware activity, and other unwanted network traffic. Unfortunately, network IDSs are known to generate a large number of alerts which overwhelm the human analyst, with many alerts having low importance or being false positives. This paper addresses this issue and proposes a lightweight stream clustering algorithm for classifying IDS alerts and discovering frequent attack scenarios.
一种网络IDS告警分类的流聚类算法
网络IDS是一种广泛使用的安全监控技术,用于检测网络攻击、恶意软件活动和其他不需要的网络流量。不幸的是,众所周知,网络ids会产生大量的警报,这些警报会使人工分析人员不堪重负,其中许多警报的重要性很低,或者是误报。本文解决了这个问题,并提出了一种轻量级的流聚类算法,用于对IDS警报进行分类和发现频繁的攻击场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信