Non stationary signal prediction using TVAR model

G. Ravi Shankar Reddy, R. Rao
{"title":"Non stationary signal prediction using TVAR model","authors":"G. Ravi Shankar Reddy, R. Rao","doi":"10.1109/ICCSP.2014.6950136","DOIUrl":null,"url":null,"abstract":"In this paper Time-varying Auto Regressive (TVAR) model based approach for non stationary signal prediction in noisy environment is presented. Covariance method is applied for least square estimation of time-varying autoregressive parameters. In TVAR modeling approach, the time-varying parameters are expressed as a linear combination of constants multiplied by basis functions. In this paper, the TVAR parameters are expanded by a low-order discrete cosine basis. The order determination of TVAR model is addressed by means of the maximum likelihood estimation (MLE) algorithm. The experimental results are presented for prediction of Discrete AM, Discrete FM, Discrete AM-FM signals.","PeriodicalId":149965,"journal":{"name":"2014 International Conference on Communication and Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2014.6950136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper Time-varying Auto Regressive (TVAR) model based approach for non stationary signal prediction in noisy environment is presented. Covariance method is applied for least square estimation of time-varying autoregressive parameters. In TVAR modeling approach, the time-varying parameters are expressed as a linear combination of constants multiplied by basis functions. In this paper, the TVAR parameters are expanded by a low-order discrete cosine basis. The order determination of TVAR model is addressed by means of the maximum likelihood estimation (MLE) algorithm. The experimental results are presented for prediction of Discrete AM, Discrete FM, Discrete AM-FM signals.
基于TVAR模型的非平稳信号预测
提出了一种基于时变自回归(TVAR)模型的噪声环境下非平稳信号预测方法。采用协方差法对时变自回归参数进行最小二乘估计。在TVAR建模方法中,时变参数表示为常数乘以基函数的线性组合。本文将TVAR参数用低阶离散余弦基展开。利用最大似然估计算法解决了TVAR模型的阶数确定问题。给出了离散调幅、离散调频、离散调幅调频信号预测的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信