Gender identification using frontal facial images

Amith K Jain, Jeffrey R. Huang, S. Fang
{"title":"Gender identification using frontal facial images","authors":"Amith K Jain, Jeffrey R. Huang, S. Fang","doi":"10.1109/ICME.2005.1521613","DOIUrl":null,"url":null,"abstract":"Computer vision and pattern recognition systems play an important role in our lives by means of automated face detection, face and gesture recognition, and estimation of gender and age. This paper addresses the problem of gender classification using frontal facial images. We have developed gender classifiers with performance superior to existing gender classifiers. We experiment on 500 images (250 females and 250 males) randomly withdrawn from the FERET facial database. Independent component analysis (ICA) is used to represent each image as a feature vector in a low dimensional subspace. Different classifiers are studied in this lower dimensional space. Our experimental results show the superior performance of our approach to the existing gender classifiers. We get a 96% accuracy using support vector machine (SVM) in ICA space.","PeriodicalId":244360,"journal":{"name":"2005 IEEE International Conference on Multimedia and Expo","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2005.1521613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

Computer vision and pattern recognition systems play an important role in our lives by means of automated face detection, face and gesture recognition, and estimation of gender and age. This paper addresses the problem of gender classification using frontal facial images. We have developed gender classifiers with performance superior to existing gender classifiers. We experiment on 500 images (250 females and 250 males) randomly withdrawn from the FERET facial database. Independent component analysis (ICA) is used to represent each image as a feature vector in a low dimensional subspace. Different classifiers are studied in this lower dimensional space. Our experimental results show the superior performance of our approach to the existing gender classifiers. We get a 96% accuracy using support vector machine (SVM) in ICA space.
正面面部图像的性别识别
计算机视觉和模式识别系统在我们的生活中发挥着重要的作用,通过自动人脸检测,人脸和手势识别,以及性别和年龄的估计。本文研究了利用正面人脸图像进行性别分类的问题。我们开发了性能优于现有性别分类器的性别分类器。我们对从FERET面部数据库中随机抽取的500张图像(250张女性和250张男性)进行了实验。采用独立分量分析(ICA)将每张图像表示为低维子空间中的特征向量。在这个低维空间中研究了不同的分类器。我们的实验结果表明,我们的方法优于现有的性别分类器。在ICA空间中使用支持向量机(SVM)得到了96%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信