iPand: Accurate Gesture Input with Smart Acoustic Sensing on Hand

Shumin Cao, Panlong Yang, Xiangyang Li, Mingshi Chen, Peide Zhu
{"title":"iPand: Accurate Gesture Input with Smart Acoustic Sensing on Hand","authors":"Shumin Cao, Panlong Yang, Xiangyang Li, Mingshi Chen, Peide Zhu","doi":"10.1109/SAHCN.2018.8397157","DOIUrl":null,"url":null,"abstract":"Finger gesture input is emerged as an increasingly popular means of human-computer interactions. In this demo, we propose iPand, an acoustic sensing system that enables finger gesture input on the skin, which is more convenient, user-friendly and always accessible. Unlike past works, which implement gesture input with dedicated devices, our system exploits passive acoustic sensing to identify the gestures, e.g. swipe left, swipe right, pinch and spread. The intuition underlying our system is that specific gesture emits unique friction sound, which can be captured by the microphone embedded in wearable devices. We then adopt convolutional neural network to recognize the gestures. We implement and evaluate iPand using COTS smartphones and smartwatches. Results from three daily scenarios (i.e., library, lab and cafe) of 10 volunteers show that iPand can achieve the recognition accuracy of 87%, 81% and 77% respectively.","PeriodicalId":139623,"journal":{"name":"2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAHCN.2018.8397157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Finger gesture input is emerged as an increasingly popular means of human-computer interactions. In this demo, we propose iPand, an acoustic sensing system that enables finger gesture input on the skin, which is more convenient, user-friendly and always accessible. Unlike past works, which implement gesture input with dedicated devices, our system exploits passive acoustic sensing to identify the gestures, e.g. swipe left, swipe right, pinch and spread. The intuition underlying our system is that specific gesture emits unique friction sound, which can be captured by the microphone embedded in wearable devices. We then adopt convolutional neural network to recognize the gestures. We implement and evaluate iPand using COTS smartphones and smartwatches. Results from three daily scenarios (i.e., library, lab and cafe) of 10 volunteers show that iPand can achieve the recognition accuracy of 87%, 81% and 77% respectively.
iPand:精确的手势输入与智能声学感应在手
手指手势输入作为一种越来越流行的人机交互方式而出现。在这个演示中,我们提出了iPand,这是一个声学传感系统,可以在皮肤上输入手指手势,更方便,用户友好且始终可访问。不同于过去使用专用设备实现手势输入的工作,我们的系统利用被动声学传感来识别手势,例如向左滑动,向右滑动,捏和扩散。我们系统的直觉是,特定的手势会发出独特的摩擦声,这些声音可以被嵌入可穿戴设备的麦克风捕捉到。然后采用卷积神经网络对手势进行识别。我们使用COTS智能手机和智能手表来实现和评估iPand。10名志愿者的日常场景(图书馆、实验室和咖啡馆)测试结果表明,iPand的识别准确率分别为87%、81%和77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信