Data-driven fusion of EEG, functional and structural MRI: A comparison of two models

Y. Levin-Schwartz, V. Calhoun, T. Adalı
{"title":"Data-driven fusion of EEG, functional and structural MRI: A comparison of two models","authors":"Y. Levin-Schwartz, V. Calhoun, T. Adalı","doi":"10.1109/CISS.2014.6814108","DOIUrl":null,"url":null,"abstract":"It has become quite common for multiple brain imaging types to be collected for a particular study. This raises the issue of how to combine these imaging types to gain the most useful information for inference. One can perform data integration, where one modality is used to improve the results of another, or true data fusion, where multiple modalities are used to inform one another. We propose two new methods of data fusion, entropy bound minimization (EBM) for joint independent component analysis (jICA) and independent vector analysis with a Gaussian prior (IVA-G), and compare them to the established data fusion techniques of multiset canonical correlation analysis (MCCA) and jICA using Infomax. Additionally, we propose a simulation model and use it to probe the limitations of these methods. Results show that EBM with jICA outperforms the other selected methods but is highly sensitive to the availability of joint information provided by these modalities.","PeriodicalId":169460,"journal":{"name":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2014.6814108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

It has become quite common for multiple brain imaging types to be collected for a particular study. This raises the issue of how to combine these imaging types to gain the most useful information for inference. One can perform data integration, where one modality is used to improve the results of another, or true data fusion, where multiple modalities are used to inform one another. We propose two new methods of data fusion, entropy bound minimization (EBM) for joint independent component analysis (jICA) and independent vector analysis with a Gaussian prior (IVA-G), and compare them to the established data fusion techniques of multiset canonical correlation analysis (MCCA) and jICA using Infomax. Additionally, we propose a simulation model and use it to probe the limitations of these methods. Results show that EBM with jICA outperforms the other selected methods but is highly sensitive to the availability of joint information provided by these modalities.
脑电、功能和结构MRI数据驱动融合:两种模型的比较
为一项特定的研究收集多种脑成像类型已经变得相当普遍。这就提出了如何结合这些成像类型以获得最有用的推断信息的问题。可以执行数据集成,其中使用一种模式来改进另一种模式的结果,或者执行真正的数据融合,其中使用多种模式来相互通知。提出了联合独立分量分析(jICA)和高斯先验独立向量分析(IVA-G)的熵界最小化(EBM)两种新的数据融合方法,并将其与基于Infomax的多集典型相关分析(MCCA)和jICA的数据融合技术进行了比较。此外,我们提出了一个仿真模型,并用它来探讨这些方法的局限性。结果表明,采用jICA的循证医学优于其他选择的方法,但对这些模式提供的联合信息的可用性高度敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信