Malware Detection Using Dynamic Birthmarks

Swapna Vemparala, Fabio Di Troia, C. A. Visaggio, Thomas H. Austin, M. Stamp
{"title":"Malware Detection Using Dynamic Birthmarks","authors":"Swapna Vemparala, Fabio Di Troia, C. A. Visaggio, Thomas H. Austin, M. Stamp","doi":"10.1145/2875475.2875476","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the effectiveness of Hidden Markov Models (HMMs) with that of Profile Hidden Markov Models (PHMMs), where both are trained on sequences of API calls. We compare our results to static analysis using HMMs trained on sequences of opcodes, and show that dynamic analysis achieves significantly stronger results in many cases. Furthermore, in comparing our two dynamic analysis approaches, we find that using PHMMs consistently outperforms our technique based on HMMs.","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2875475.2875476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

In this paper, we compare the effectiveness of Hidden Markov Models (HMMs) with that of Profile Hidden Markov Models (PHMMs), where both are trained on sequences of API calls. We compare our results to static analysis using HMMs trained on sequences of opcodes, and show that dynamic analysis achieves significantly stronger results in many cases. Furthermore, in comparing our two dynamic analysis approaches, we find that using PHMMs consistently outperforms our technique based on HMMs.
恶意软件检测使用动态胎记
在本文中,我们比较了隐马尔可夫模型(hmm)和Profile隐马尔可夫模型(phmm)的有效性,两者都是在API调用序列上训练的。我们将我们的结果与使用操作码序列训练的hmm的静态分析结果进行了比较,并表明动态分析在许多情况下取得了明显更强的结果。此外,在比较我们的两种动态分析方法时,我们发现使用phmm始终优于基于hmm的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信