A Dask Distributed Radio Astronomy Reduction Framework

S. Perkins, H. Bester, B. Hugo, J. Kenyon, O. Smirnov
{"title":"A Dask Distributed Radio Astronomy Reduction Framework","authors":"S. Perkins, H. Bester, B. Hugo, J. Kenyon, O. Smirnov","doi":"10.23919/URSIGASS51995.2021.9560409","DOIUrl":null,"url":null,"abstract":"Interferometric coherency measurements scale quadratically with the number of stations in the interferometer. This, combined with high spectro temporal resolution of the data necessitates the use of modern computing strategies such as MapReduce, and cluster computing frameworks to reduce data in tractable amounts of time. Frameworks such as Spark and Dask [1] lean towards a streaming, chunked, functional programming style with minimal shared state. Individual tasks processing chunks of data are flexibly scheduled on multiple cores and nodes. To process the quantities of data produced by contemporary radio telescopes such as MeerKAT, and future telescopes such as the SKA, radio astronomy codes must adapt to these paradigms. In what follows, we describe two Python libraries, dask-ms and codex-africanus, which enable the development of distributed High-Performance Radio Astronomy code.","PeriodicalId":152047,"journal":{"name":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS51995.2021.9560409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Interferometric coherency measurements scale quadratically with the number of stations in the interferometer. This, combined with high spectro temporal resolution of the data necessitates the use of modern computing strategies such as MapReduce, and cluster computing frameworks to reduce data in tractable amounts of time. Frameworks such as Spark and Dask [1] lean towards a streaming, chunked, functional programming style with minimal shared state. Individual tasks processing chunks of data are flexibly scheduled on multiple cores and nodes. To process the quantities of data produced by contemporary radio telescopes such as MeerKAT, and future telescopes such as the SKA, radio astronomy codes must adapt to these paradigms. In what follows, we describe two Python libraries, dask-ms and codex-africanus, which enable the development of distributed High-Performance Radio Astronomy code.
一个任务分布式射电天文学简化框架
干涉相干测量与干涉仪中台站的数量成二次比例。再加上数据的高光谱时间分辨率,这就需要使用现代计算策略,如MapReduce和集群计算框架,以便在可处理的时间内减少数据。Spark和ask[1]等框架倾向于流、块、函数式编程风格,共享状态最少。处理数据块的单个任务在多个核心和节点上灵活调度。为了处理当代射电望远镜(如MeerKAT)和未来的射电望远镜(如SKA)产生的大量数据,射电天文学代码必须适应这些范式。在接下来的内容中,我们描述了两个Python库,dask-ms和codex-africanus,它们支持分布式高性能射电天文学代码的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信