Fast Affinity Propagation by Cell-based Indexing

J. Data Intell. Pub Date : 2020-03-01 DOI:10.26421/JDI1.1-4
Hiroaki Shiokawa, Tomohiro Matsushita, H. Kitagawa
{"title":"Fast Affinity Propagation by Cell-based Indexing","authors":"Hiroaki Shiokawa, Tomohiro Matsushita, H. Kitagawa","doi":"10.26421/JDI1.1-4","DOIUrl":null,"url":null,"abstract":"Affinity Propagation is one of the fundamental clustering algorithms used in various Web-based systems and applications. Although Affinity Propagation finds highly accurate clusters, it is computationally expensive to apply Affinity Propagation to a large dataset since it requires iterative computations for all possible pairs of data objects in the dataset. To address the aforementioned issue, this paper presents efficient Affinity Propagation algorithms, namely \\textit{C-AP}. In order to increase the clustering speed, C-AP employs \\textit{cell-based index} to reduce the number of the computed data object pairs in the clustering procedure. By using the cell-based index, C-AP efficiently detects unnecessary pairs, which do not contribute to its clustering result. For further reducing the computation time, we also present an extension of our algorithm named \\textit{Parallel C-AP} that utilizes thread-parallelization techniques. As a result, C-AP and Parallel C-AP detects the same clusters as those of Affinity Propagation with much shorter computation time. Extensive evaluations demonstrate the performance superiority of our proposed algorithms over the state-of-the-art algorithms.","PeriodicalId":232625,"journal":{"name":"J. Data Intell.","volume":"175 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Data Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/JDI1.1-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Affinity Propagation is one of the fundamental clustering algorithms used in various Web-based systems and applications. Although Affinity Propagation finds highly accurate clusters, it is computationally expensive to apply Affinity Propagation to a large dataset since it requires iterative computations for all possible pairs of data objects in the dataset. To address the aforementioned issue, this paper presents efficient Affinity Propagation algorithms, namely \textit{C-AP}. In order to increase the clustering speed, C-AP employs \textit{cell-based index} to reduce the number of the computed data object pairs in the clustering procedure. By using the cell-based index, C-AP efficiently detects unnecessary pairs, which do not contribute to its clustering result. For further reducing the computation time, we also present an extension of our algorithm named \textit{Parallel C-AP} that utilizes thread-parallelization techniques. As a result, C-AP and Parallel C-AP detects the same clusters as those of Affinity Propagation with much shorter computation time. Extensive evaluations demonstrate the performance superiority of our proposed algorithms over the state-of-the-art algorithms.
基于单元格索引的快速亲和性传播
亲和性传播是各种基于web的系统和应用程序中使用的基本聚类算法之一。尽管Affinity Propagation可以找到高度精确的集群,但是将Affinity Propagation应用于大型数据集的计算成本很高,因为它需要对数据集中所有可能的数据对象对进行迭代计算。为了解决上述问题,本文提出了高效的亲和性传播算法,即\textit{C-AP}。为了提高聚类速度,C-AP采用\textit{基于单元格的索引}来减少聚类过程中计算的数据对象对的数量。通过使用基于细胞的索引,C-AP可以有效地检测不影响聚类结果的不必要的对。为了进一步减少计算时间,我们还提出了一个名为\textit{Parallel C-AP}的算法扩展,它利用线程并行化技术。因此,C-AP和并行C-AP检测到的集群与亲和传播相同,但计算时间要短得多。广泛的评估表明,我们提出的算法优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信