A Heuristic Algorithm Based on Resource Requirements Forecasting for Server Placement in Edge Computing

Kaile Xiao, Zhipeng Gao, Qian Wang, Yang Yang
{"title":"A Heuristic Algorithm Based on Resource Requirements Forecasting for Server Placement in Edge Computing","authors":"Kaile Xiao, Zhipeng Gao, Qian Wang, Yang Yang","doi":"10.1109/SEC.2018.00043","DOIUrl":null,"url":null,"abstract":"The placement of edge computing server is the key to the rapid development of edge computing. We propose prediction-mapping-optimization heuristic based on resource requirements forecasting for server placement in edge computing. Through this algorithm, we divide the task into multiple subtasks, and then realize the mapping of subtask-location of server, and finish the information interaction between the servers and the data source through the data naming mechanism proposed by us. With the goal of the lowest cost of service providers, we propose a cross-region resource optimization model and obtained the final server placement strategy.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The placement of edge computing server is the key to the rapid development of edge computing. We propose prediction-mapping-optimization heuristic based on resource requirements forecasting for server placement in edge computing. Through this algorithm, we divide the task into multiple subtasks, and then realize the mapping of subtask-location of server, and finish the information interaction between the servers and the data source through the data naming mechanism proposed by us. With the goal of the lowest cost of service providers, we propose a cross-region resource optimization model and obtained the final server placement strategy.
基于资源需求预测的边缘计算服务器布局启发式算法
边缘计算服务器的配置是边缘计算快速发展的关键。提出了一种基于资源需求预测的预测映射优化启发式算法。通过该算法,我们将任务划分为多个子任务,然后实现子任务与服务器位置的映射,并通过我们提出的数据命名机制完成服务器与数据源之间的信息交互。以服务商成本最低为目标,提出了跨区域资源优化模型,得到了最终的服务器布局策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信